

Synchronized Commerce
Computable Contracts & Ecosystems

Author: Scott Nelson
May 2020

Notes on whitepaper

The use of the words “agreement” and “contract” are very purposeful in this document. The word
“agreement” is used to cover both informal agreements and formal written contracts. The word
“contract” is used to describe a formal written legal contract between parties.

This document is intended to be around for a while and represents a vision of a future platform,
therefore, the document is written in present tense. At the time of writing this technology has been in
development for two years. To complete, the platform will require more time and other organizations
to contribute to the open source base.

This paper frequently uses the term “ecosystem”. This is meant to refer to a business ecosystem as
a network of organizations within a business sector or geography — including suppliers, distributors,
customers, competitors, government agencies, and so on that are independently related to the
delivery of products and services.

1

Table of contents
Table of contents 2

Preface 6
Consistency 6
Symmetry 6
Confidence 7
Why computable contracts help 7
We get to choose 7
This whitepaper 7

Overview 8

The current environment 10
Contracts can’t simply be converted 10
The case for standardized contracts 10
Computable contracts as a business model 11

What’s in an agreement 13
The lack of formal agreements 14
The growth of intermediary agreements 14
The value for standardized contracts 14
The 96-4 rule in commerce agreements 15
The power of contract componentization and templates 15

The link between contracts and economics 17
The link between contracts and supply chain events 17

Supply chain drift 18
Economics in contracting 19

The link between contracts and accounting 19
The link between contracts and Identity 21

Device and system identification 22
Individual authentication, authorization and delegation of responsibilities 22
Entity identification and proof of authorization 22

The link between contracts and settlement 22
The importance of settlement finality 23

The link between contracts and laws, regulations and tax 24
Ecosystem as micro-economies 25
Partially self governing utility 25
Ecosystem links – Contract exchanges 26

The link between contracts and registries 26
Tradable rights and obligations 27

The link between contracting and data security 28

Contracting model 30

2

Platform master services contract 30
Common master services contracts 31
Master ecosystem contracts 31
Common statements of work 32
Ecosystem statements of work 32
Ecosystem interchange contracts 33

Ecosystem fabric components and contracts 33
Contract templates 34

Summary 34

Appendix A – Contracts 36
Common contract components 36
Ecosystem components 36
Parameters 37
Component hierarchy 37
Component composition language 38
Common component classes 38

Definitions 39
Intent 39
Contract roles 39

Commencement clauses 40
Term 40
Scope 40

Workflows 41
States 42

Exception states 42
Acceleration clauses 43
Default clauses 43

Events 43
Calendar events and deadlines 44
Timers and time clauses 44
Time is of the essence clauses 44

Rights | Obligations 45
Lien clauses 45
Retention of title clauses 45
Waiver clauses 46

Risks 46
Risk assessments 46

Risk level 46
Risk window 47
Risk magnitude 47

Risk mitigation 47
Risk provision 48

3

Indemnity clauses 48
Conditions 48
Contract configuration 48

Configuration interfaces 49
Dependency tree 49
Interface enumerations and lists 49
Value formats and validations 50

Contract templates 50
Template wizards 50

Pricing 50
Discounts 50

Invoicing 50
Cost allocation and account coding 51

Settlement 51
Incentives 51
Rebates 53
Data requirements 53

Data required 53
Data structure 53
Data transmission 53

Product, project and service requirements 53
Product requirements 54
Project requirements 54
Service requirements 54

Testimonium and signature blocks 54
Attestation provisions 54

Component ownership 54
Component royalties 54

Royalty calculations 55
Component authors 55
Component points 56
Contract royalties 56
right to withhold 57
Tokenized 57

Component domains 57
Testing and modeling 57

Testing 58
Modeling 58

Component certification 58
Component rating 58

Clauses 58
Enforceability clauses 58
Dispute resolution clauses 59

4

Liability clauses 59
Capacity 59
General clauses computable 59
General clauses non-computable 60
Force majeure 60
Data privacy clauses 60
Data access clauses 60
IP ownership clauses 60
Severance clauses 60
Setoff clauses 60
Damages clauses 61
Authentic version clauses 61
Entire agreement clauses 61
Exemption clauses 61
Retention of title clauses 61
Best endeavours clauses 61
Recitals provision 61
Reps and warranty clauses 62

Assignment of rights 62
Insurance templates 62
Dynamic vs static contracts 62

5

Preface
This paper is part of a series of papers about Synchronized Commerce. These papers describe
what it takes to create consistency, symmetry and confidence within commercial activity. This can
be done by using a new form of automated contracts called computable contracts. When designed
and used properly these computable contracts will enable win / win vs win / lose situations.

Inconsistency and asymmetry, fuelled by fear, ultimately power lies, killing and destruction. Inequity,
injustice and the disproportionate pooling of power has rarely led to a good result through the open
lens of history. This paper is the result of many years of relevant experience and also comes out of
many failures and successes. It holds a small piece of the promise for a better future with greater
prosperity for all.

Consistency
Consistency comes from being able to classify things. To classify we need a classification system.

One of the most important realizations in my life occurred at the British Museum exhibition on the
History of Classification. This exhibition made the point that all advances in commerce, economics,
medicine, science and society had been preceded by an advancement in classification. Whether as
a way to classify temperature, time, information, molecules, mass, length, pathogens or value – it
does not matter.

For example, saying it’s “warm today” is significantly less precise than saying it’s 20 degrees
celsius. Until we had a system to classify temperature all we had was cold, cool, warm or hot.
Depending on where you live 20 degrees celsius may be considered cold, cool, warm or hot.
Classification produces clarity and clarity reduces confusion which enables consistency.

Consistency reduces fear and enables trade.

Symmetry
Symmetry of information is produced when we all share the same facts about a transaction. The
opposite of symmetry is asymmetry which occurs when one party knows something important the
other party does not know about a transaction.

Asymmetry of information is one of the greatest obstacles to economic growth. The lack of
symmetry between two parties creates the opportunity for deception, fraud and unfair advantage.

Conversely, any market that has a high degree of information symmetry is highly liquid and efficient.
Symmetry results in trust, I can know what you know about facts governing the price, quality,
location or ability.

Symmetry reduces fear and enables trade.

6

Confidence
Confidence is produced by knowing that claims are valid and risks are known. Lack of confidence or
worries that can’t be resolved produce inaction. Worry literally causes people to freeze.

Risk drives the fear of “what if”. What if results in; friction, cost and lost opportunity. What ifs causes
us to freeze because we can’t tell what the risks actually are. If risk is known, we can figure out how
to mitigate the risk. Where risks are known and mitigated we can do more deals and create more
value.

Confidence reduces fear and enables trade.

Why computable contracts help
Consistency is a byproduct of computable contracts built from common components. To work these
common components require classification models to function. Classification creates consistency.
Consistency of information is key to coordination and cooperation within ecosystems.

Symmetry is a side effect of standardized computable contracts. The ecosystems defined in this
whitepaper must have standardized computable contracts to work.

Confidence requires the validation of claims, identification of risks and elimination of fraud.
Computable contracts that classify risk in common ecosystem processes with settlement finality and
identity verifications reduce worries. A reduction of worry increases confidence.

We get to choose
I believe in the existence of a creator who has allowed free choice, even though it can result in
horrible things sometimes. He loved us so much He allowed us to make our own choices.
Ecosystems driven by computable contracts can enable us to choose what economic world we want
to live within, to some degree regardless of location.

As with all new technologies, what we choose to do with it will be either a blessing or a curse. If we
choose wisely we will see prosperity. But, if we choose poorly, automation will only enslave us
further.

This whitepaper
In this whitepaper I use the word ecosystems because I find people understand it but they are really
more like sub-economies that aren’t necessarily constrained by a border. That’s right, they can
transcend countries, cultures, and industries. Payment networks already do this today.

I believe the long term result of this technology will be to provide an ability for more of us to pick the
ecosystems we want to be part of and support. These ecosystems will represent different ideas
about many things, some of these ideas will succeed and some won’t. The point is that the best
ideas will be proven by their results.

Technology doesn’t fix corrupt hearts but it can make it difficult to lie, cheat or steal.

Seeking blessings for our future, J. Scott Nelson

7

Overview
A goal of the Sweetbridge Synchronized Commerce platform is to enable a new culture of
commerce that is frictionless, low risk and fair:

● Reducing the fear that we will lose, while others win,

● A platform for building ecosystems that foster safer, better and more profitable relationships
in business,

● Ecosystems that ensure good actors are rewarded by making it difficult for bad actors to
prosper, and

● Commerce that does not need to rely on fear and greed to succeed, with settlement finality
and risk management built right into the contracting fabric.

Sweetbridge is an open source platform. Advances in computable contracting are core to this open 1

source platform’s ability to create a new culture of commerce. Computational Contracts allow
agreements between parties and even laws to be understood, executed and verified by computers.

The Sweetbridge platform has already been adopted by several consortiums and at the time of
writing is still under development. Computable contracts are just one aspect of Synchronized
Commerce. Identity, claim proofs, accounting, audit, data security and settlement are also aspects
of the platform . 2

Though the platform is open source, it allows parties to create applications that are not open
sourced. These applications can generate contracts from a model of the parties’ relationships and
business processes. These contracts can be part of commercialized applications that generate
revenue within the Sweetbridge Synchronized Commerce platform.

These applications can be thought of as Apps that generate royalties or be open sourced. These
Apps include computable contracts among other things that automate and validate commerce
transactions. They can even automate accounting, audits and settlement.

This new technology can validate claims, financials and digital twins of products, assets, rights or
risks in real-time. To do this, the platform must understand the agreements that inform the
accounting treatments, rights, obligations and risks in transactions. This means agreements must be
modeled in a way that computer algorithms or AIs can understand them with a high degree of
accuracy.

Historically, areas of commerce with highly standardized and balanced contracts see reductions in
court disputes and lower costs of capital. This is true to a greater degree when the contract creates
settlement finality. Payment settlement networks, commodity exchange agreements, and ISDA
Master Agreements are just a few examples where this has occurred.

Therefore, one of the goals of the Sweetbridge platform is to enable the creation of standardized
contracts and legal components for computable contracts that increase settlement finality. This will

1 See the University College London’s description of Computable Contracts and Finance
https://www.ucl.ac.uk/computer-science/research/research-groups/financial-computing-and-analytics/computa
ble-contracts
2 See www.sweetbridge.com for other whitepapers and research documentation

8

https://www.ucl.ac.uk/computer-science/research/research-groups/financial-computing-and-analytics/computable-contracts
https://www.ucl.ac.uk/computer-science/research/research-groups/financial-computing-and-analytics/computable-contracts
http://www.sweetbridge.com/

enable the platform to be used to create new ecosystem exchanges, marketplaces and other
intermediaries to service ecosystems with frictionless commerce.

Commerce is frictionless when accounting, audits, banking, contracting, financing, risk
management, settlement and validations can be done in near real-time. Ecosystems can then
provide many of the capital formation, liquidity, risk management and optimization of production
benefits that are currently only available to major corporations. The result is that these value chains
can obtain many of the advantages of a major enterprise.

This is possible because we can now use Artificial Intelligence (AI), Distributed Ledger Technology
(DLT), Internet of Things (IoT), machine vision, satellites and new types of scanners as well as
personal devices to validate claims in near real-time. By using computable contracts that can model
the rights, obligations, roles and state transitions turning on and being discharged within workflows,
we can identify what must be verified to be trusted. This automates trust by verifying the process.

By storing these verifications in systems that ensure they can’t be faked or hacked we can know
what is and is not verified. When we know what is verified and what has historically been reliable we
can measure risk more precisely. Risk that a party is lying, cheating or defrauding is therefore
reduced.

This means we can enable decentralised value chains to act as if they were integrated value chains
as if they were controlled by a single entity. Computable contracts that can be paired with
verifications for events around location, quality and quantity are key to this becoming reality.

Therefore, building audits and verification of claims into the platform have been core objectives.
These objectives drove the design of the Sweetbridge platform’s computable contract design. The
desire is to enable value chains to become ecosystems that compete instead of companies that
compete. To enable this the Sweetbridge platform has built in ways that let the participants share in
the value and benefits created by the ecosystem.

Sweetbridge is even building standardized computable contracts for value sharing that will enable a
group of smaller organizations to share in an ecosystem’s value. If the ecosystem becomes large
enough and diversified enough it should be valued like major companies such as Apple, Alibaba or
Amazon. Imagine the global impact of a group of small lot farmers linking up to form an ecosystem
with the same economic advantages of a Big Ag firm.

We believe the benefit of acting together can provide a massive incentive to adopt the type of
contracting described in this whitepaper. These benefits will be very tangible, things such as lower
working capital cost, greater value liquidity, lower cost of insurance and better production
optimization. Finally, this technology will lower fraud which now represents more than 6.05% of GDP
and which has remarkably grown by 100% in the last 10 years . 3

3 The Financial Cost of Fraud 2019 - Crowe Clark Whitehill, together with the University of Portsmouth’s
Centre for Counter Fraud Studies (CCFS)

9

The current environment
Most contracts in use today are not written to enable modeling by computers. There are five primary
reasons for this:

● Timing – The technology to model agreements holistically has not existed until recently,

● Skill – Lawyers lack the required technical skills and cross disciplinary training to create
these new computable contracts by themselves,

● Motivation – A lawyer’s primary motivation is not to make their contracts computable and
dynamic to facilitate frictionless commerce,

● Business Model – Law firms make money by selling time not encoding intellectual property
in technology that generates revenue from use over time, and

● Benefit – Agreement modeling does not benefit the legal profession as much as Corporate
GRC (Governance, Risk and Compliance), Audit, Capital Markets and Insurance sectors.

Contracts can’t simply be converted
Converting existing contracts into data models will frequently fail to fully represent the intent of a
relationship in a way that enables the intent to be accurately understood by computers. Existing
contracts frequently contain ambiguous language by design, and this ambiguity requires a dispute
resolution process to resolve. They are typically static in nature and fail to fully describe the intent in
all relevant situations or define all possible events within the relationship’s workflows.

The result is that existing contracts can only be modeled to various degrees of accuracy. This
means there are risks when automating existing contracts around rights, obligations and risks. It
means that workflows frequently are insufficiently defined to be modeled. For example, the way to
deal with common types of failures may be undefined.

As a result, existing contracts can’t be completely or accurately automated because today’s
contracts are designed to require some level of human intervention. This can be assisted with AIs
but the cost of training the AI is significantly high. The better solution is to switch to newer
standardized contracts designed from data models that lack today's weaknesses.

The Sweetbridge Synchronized Commerce platform is designed to deal with the reality of the legacy
agreements that exist today. It can deal with transactions that aren’t governed by a contract at all. In
that case, some of the verification benefits to users of the platform are simply reduced. The platform
can also work with PDFs of contracts even though it can’t model them without converting them.
Agreements can also be modeled incrementally or partially when some aspects of the agreement
can’t be or aren’t yet modeled.

But, the platform provides a compelling advantage to both users and creators of new standardized
computable contracts.

The case for standardized contracts
The platform allows for a simpler approach than dealing with existing contracts or converting
contracts. Simply switch to using new standardized computable contracts gradually replacing the

10

agreements in use today. This is very cost effective because individual entity’s legal costs are quite
low when using standardized contract templates. This means they leverage the work done by others
in an ecosystem instead of hiring a lawyer to write customized contracts, resulting in a much lower
cost.

The platform enables ecosystems that already have the skill and can easily absorb the training to
author highly standardized and computable contracts.

● Adaptive contracts that are based on the relationship and processes agreed to by the
parties.

● Generated contracts that are actually written by the platform based on data models of the
actual relationship instead of being written by hand.

This does not mean the parties will not use lawyers but that the lawyers’ role broadens and will
primarily focus on helping the parties think through the pros and cons of various contract templates
and variables.

These standardized contracts are made up of standardized components that are designed by
lawyers as well as accountants, industry process experts, computer scientists, economists and
experts in ethics. In most cases, to realize the full benefits, a new computable contract requires all
of these disciplines.

These contracts are driven from data that models and monitors the relationship as it evolves.
Therefore they can even detect when the parties’ processes and relationships change, notifying or
recommending new Statements of Work (SOWs) or components. This enables computable
contracts that are adaptive instead of static.

Lawyers that realize these changes offer an opportunity by adopting a new culture of legal work will
likely be more successful than those who ignore the inevitability of these changes. This old culture
exists in part because there was no objective way to measure contract compliance. Once that way
is created, in the form of computable contracts, it will enable a shift in the motivation of legal work.
The goal will become clarity and broad adoption which requires contracts that are fair and balanced,
as only these types of contracts will become standards for their industries and use cases. Since the
greater success will come from the broadest use of contracts that generate more royalties, authors
will have an incentive to make contracts appeal to the needs of the widest audience.

For standardized contracts to be widely accepted they must be fair, creating win / win instead of win
/ lose. The default master services agreements available on the platform will take this approach.
This is possible because they can be built on open source master service agreement components
designed to simplify dispute resolution, liability and risk management that reside on the platform.
These act like laws in the local jurisdiction that must be overridden explicitly when needed but
provide a default set of rights and obligations, risk and mitigation components, and ecosystem
dispute resolution processes.

Computable contracts as a business model
Contract component and template authors can earn royalties whenever their standardized contracts
or components are used. These royalties are collected automatically and reward the intellectual
property work. They also subsidize the ongoing maintenance that is continually needed to keep

11

these contracts up to date with changes in laws. This eliminates the need for each individual party to
pay for legal fees.

Authors can compose new contracts from open source components or share a royalty when they
use components created by others. All of this is automatic and done through a computable
intellectual property (IP) contract enforced by the platform that governs the use of others’ intellectual
property.

These standardized contracts are designed to take the cost, frustration and risk out of legal
agreements while minimizing the likelihood of disputes. They operate under master agreements that
create settlement finality whenever they are used. These standardized contracts are created by
templates that can be highly configurable. By using these standardized contracts anyone can
gradually replace existing contracts between counterparties over time.

The result is a contract that can be modeled by a computer to a very high degree of accuracy and a
new age of commerce. Commerce where:

● Payments happen faster,

● Working capital is cheaper,

● Risks are lower and known,

● Disputes are fewer and simpler,

● Insurance cost less and is built into transactions,

● Accounting is automatic,

● Real-time audits happen automatically, and

● Lying, cheating and fraud are difficult.

These benefits are so substantial that the cost of developing standardized computable contracts for
an ecosystem can easily be justified. This enables consortium based business models which create
these standardized contract components and templates to generate income from royalties. These
consortiums can be made up of multiple disciplines, institutions and industry participants within a
legal jurisdiction or spanning multiple jurisdictions for an industry sector.

By designing templates with the needs of financing entities, insurance companies and professional
services firms in mind, a substantial cost reduction can be achieved for these entities. An ecosystem
consortium can act as an intermediary to integrate these financial services into the master services
contracts to enable significant benefits to all users. The resulting cost reduction and increase in
benefits renders a small royalty on each transaction needed to fund computable contracts
insignificant.

As an example, a royalty of 10 basis points on £10 billion worth of economic activity is £10M per
year. This is more than enough to provide a ROI for investment and cover the ongoing maintenance
of standardized contract templates in many industry sectors. The initial ecosystems will likely need
to be grant funded by governments with significant participation by researchers and universities.
However, once proven models exist within several sectors, grant funding will likely no longer be
needed.

An ecosystem-governed entity that resolves disputes could also be funded by these royalties.

12

What’s in an agreement
Contracts define a set of rules, procedures and understandings between parties in a relationship.
The parties in a contract may have roles such as buyer or seller. These roles frequently participate
in a commercial workflow made up of multiple states or milestones that change when specific
events occur.

Each new state can result in changes to rights or obligations for the parties. Contractually granted
rights for one party always result in an obligation for another party. All rights and obligations carry
risk, the risk that the counterparty won’t fulfill their obligation if nothing else. Risks may have risk
mitigations that are required by the contract to contractually transfer risk to another party.

Agreements may be formal contracts or informal arrangements and both are extensions to the laws
and regulations that exist in the legal jurisdictions of the transactions that occur under the contract.
Contracts can sometimes be used to override the legal requirements or laws of the local jurisdiction,
while in other cases this may be prohibited.

All of this must be accurately modeled in data to correctly understand what rights, obligations, risks
and mitigations are in existence on a commercial transaction as it moves through a workflow.

The term computable contract in this document means something much more than a “smart
contract”. The term smart contract commonly refers to a snippet of code which is neither smart nor a
contract in the legal sense. The phrase “smart contracts” has been widely used in the blockchain
space and should not be confused with computable contracts.

A computable contract is a contract that a computer can “understand.” This means a computer can
automatically assess whether the terms of the contract have been met, discharged and settled.

Therefore, a computable contract is one that is:

● A legally binding contract,

● A data model that fully expresses the meaning and intent of every clause of the contract in
an unabligious way,

● The logic needed to validate and properly determine the state with a contract on a
transaction as a result of events,

● A complete description of the data structure, events, workflows and states in the business
process that represents the relationship between parties, and

● Anything else needed to make it possible to automate the discharge of the terms in a
contract.

The Sweetbridge Synchronized Commerce platform builds on the significant academic work that
has been done on computable contracts by universities such as Stanford, University College
London and many others. The platform literally generates the written contracts from data models.
The contract then becomes a living document that can be quickly updated and compared when
changes need to be made.

This means that the contract documents become a user interface for lawyers, courts and legal
professionals to use to computerize data models. Documents are the read-only representation, not
the source of drafting the agreement. Instead of drafting agreements using the written word,

13

contracts are designed more like engineers design products by using pre-existing components.
When needed new components can be designed and crafted to fulfill new needs.

The lack of formal agreements
The vast majority of business transactions occur without a formal contract between the parties.
Business to customer (B2C) transactions don’t have a contract between the buyer and seller. We
don’t sign contracts to eat at restaurants with the owner of the restaurant nor do we sign a contract
when buying most things at retail shops, petrol stations or grocery outlets.

However, there may be other forms of agreements that cover some aspects of these transactions:

● On-line transactions frequently require the user to accept a “terms of use” agreement,

● Purchase orders, RFQ responses, bill of ladings or sales orders frequently have terms which
cover aspects of the transaction,

● Consumer or business purchases using a credit card or debit card, and

● Laws or regulatory rules that cover aspects of a transaction.

Even business to business (B2B) transactions are frequently conducted simply by a purchase order
or sales order without a formal agreement. Many businesses don’t rely on contracts with some or all
of their customers or suppliers. Instead, they rely on long standing relationships of trust or the law to
protect themselves from negative consequences.

In B2C transactions consumer protection laws exist and many regulations were created to protect
both B2C and B2B buyers from substandard, defective or dangerous products or services. These
legal rules may be in force whether the parties know it or not. Sometimes these can be overridden
by agreement of the parties in contracts and sometimes they can’t. In many developed countries a
primary reason for some contracting is to override the default set of rights and obligations
established by local laws.

The growth of intermediary agreements
In recent years more and more B2C and B2B transactions are occurring via intermediaries such as
exchanges, on-line marketplaces or e-retailers. The size of the retail e-commerce market alone is
estimated to exceed $4tn in 2020. Historically, marketplace intermediaries have been used for 4

hundreds of years in financial services and capital markets such as bond, commodity, payment and
stock exchanges.

Intermediaries frequently require users to use standardized contracts or to accept terms of use. As a
result, the number of transactions that utilize standardized agreements is growing rapidly. The
benefits of these online marketplaces and exchanges are so high that parties are typically willing to
agree to these standard terms and conditions in order to access the services.

The value for standardized contracts
Standardized contracts have allowed the creation of new innovative services such as the creation of
the world's largest fintech company, Alipay. The reason this is true is that the cost and effort of the

4 See Statista https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/ on size of retail
e-commerce sales worldwide.

14

https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/

analysis needed to become comfortable with the agreements is amortized over a large amount of
economic activity. With a larger number of contract users, it is easier to get a high return on
investment from the cost of the analysis. As a result insurance companies, financial markets,
lawyers and others are willing to invest in understanding the risks associated with financing,
derivatives or settlement based on these agreements.

Standardized contracts allow many parties to participate in crafting the contract components and
templates. This is not practical with customized contracts unless the value of the agreement is very
high. Over time, standardized agreements tend to mature so that they contain more and more of the
rights and risk mitigations needed by non-contract parties to be comfortable with their inherent risks
when working with one of the parties. This greatly reduces the friction in commerce and creates
information symmetry which leads to lower cost and faster execution.

The 96-4 rule in commerce agreements
The Pareto Principle, commonly known as the 80-20 rule, asserts that 80% of outcomes (or outputs)
result from 20% of all causes (or inputs) for any given event. If we apply this to standardising
contracts then we should be able to standardize 80% of the transactions with 20% of the effort.

However, over a 25 year period while converting tens of thousands of complex commercial
contracts into data models the author found that there is at least one more 80–20 that can be
achieved by breaking contracts into components that standardize a part of a contract. See Common
Contract Components below.

This means that 96% of agreements can be covered into standardized computable contracts for 4%
or less of the effort of converting all agreements into standardized forms. This can be calculated as
follows:

● 100% - (100% * 20%) = 80%

● 80% + (80% * 20%) = 96% of agreements

● 100% - (100% * 80%) = 20%

● 20% - (20% * 80%) = 4% of effort

The power of contract componentization and templates
Contract templates have been used in many industries in many industrialized nations for more than
50 years. In recent years, web based firms such as LegalZoom, Rocket Lawyer and others have
created standardized legal contracts using web based templates for common individual and
commercial agreements. Paper or web templates allow individuals, business owners or paralegals
to draft agreements in a few minutes without the need of a lawyer to provide specific advice.

By creating standardized computable components for contracts that can display themselves as
clauses in printed form we can enable s to participate in the creation of contract templates with
minimal support and training. Many law firms and s already use a process of pasting together boiler
plate language when crafting contracts. They already use tools such as word processing to populate
variables or find and replace text. They are already used to some form of templatization.

15

However, the effort to create well thought-out components can be significant. Creation of
components that provide the full benefits of computable contracts requires multiple disciplines. Law
and regulation forms the basis, but computable components require many other disciplines. From
accounting to audit, from GRC to ethics, from settlement to risk assessment, from insurance to risk
mitigation, from banking to capital markets, all of these areas can be improved by our ability to
accurately model a contract.

16

The link between contracts and economics
Like a well designed appliance or car a well designed contract serves the parties that use it in a
variety of ways. Good design can reduce friction and enable valuable benefits by taking into account
the other areas of commerce that are affected by a contract. By taking these other areas into
account when we create computable contracts we can make businesses and economies more
competitive.

We can even do things we might not have thought possible such as automate auditing of financial
transactions in real-time, create new types of financial instruments and manage risks systemically.
The most important of these new abilities is the creation of decentralized ecosystems of businesses
that can obtain many of the benefits of a major corporation but without the need to sacrifice their
sovereignty or dilute their equity. Capital formation, risk management and production optimization
can be done at an ecosystem level or even at the level of an economy.

The link between contracts and supply chain events
For a computable contract to automate anything it must be aware of key events that trigger state
transitions in a transaction between the parties. So if payment is to be made 15 days after goods
are received, the event that starts the 15 day clock, “goods received” must be known. Computable
contracts have significantly lower value if they aren’t integrated with information about the events
that control state changes within a transaction workflow.

Some of these state changes can come from automated sources of information such as IoT devices
or third party organizations such as the logistics company that delivers the goods. However, many
of these state changes must come from humans or at least be “signed off” by humans. For example,
if the payment is not due until 15 days after “acceptance of goods”, then not only the delivery but the
acceptance meaning “the goods are in good condition” needs to be known.

Who signed or approved something is so common in business processes that until computable
contracts can integrate with systems that know this information they will have less value. Integration
with existing systems to obtain this information such as ERP systems may be possible in some
cases but in many cases human validations are not recorded in trusted systems.

To address this problem the Sweetbridge platform is designed to allow personal devices to provide
verifications of events occurring. These devices are ubiquitous and apps to verify information
through pictures, pick lists and other means can easily verify who is using the device via device
biometrics. These biometrics can identify the actual party “signing” the verification, their GPS
location and the exact time.

Simple apps that can be configured for any verification or parties can be tailored to provide the
equivalent of a very difficult to forge signature and state verification. The computable contract can
actually configure these Apps to fit the contract event verification requirements in the contract itself.
By integrating this with barcodes and other simple ways of capturing information from printed forms
this verification process can be made very simple.

17

Supply chain drift

What a company needs from its supply chain changes over time. The shorter the product life cycles
or the more project oriented the work, the more this tends to be true. The more dynamic the
business activity or the more customized its product or service, the more the actual product or
service will drift from what was thought to be needed at the point of contracting. This is known as
supply chain drift.

Certain industries such as construction, electronic products and consulting services experience
higher supply chain drift than others but all industries have some form of supply chain drift. The
higher the supply chain drift the more likely that some or all of the agreement will no longer reflect
what is needed, requested, or required by the parties during the period the contract is in force.

Supply chain drift introduces risk. This risk is reflected in higher cost and greater uncertainty about
the ability of the counterparty to perform on time.

Today, industries that experience high supply chain drift typically have a common practice for
working risks out. For example, in construction dispute processes or in consulting some form of
padding the price or change order discipline is used.

Regardless, these take the form of de facto renegotiation, reconciliation or dispute resolution but
rarely get reflected in an updated contract. Most of the time these de facto renegotiations are
handled informally by the parties, particularly if they have long standing relationships. This presents
a problem for computable contracts as they will no longer model the actual relationship; therefore,
activities such as settlement can no longer be automatic.

The solution is to make the computable contracts adaptive based on what is actually happening
between the parties. For a computable contract to monitor and automate transactions we must
define the supply chain events, product verifications or sign offs, with changes to product or service
specifications being updated within the data model. We don’t need to represent these fully in the
data model, at a minimum we simply need to recognize change.

As these changes are verified and validated the computable contract can actually detect the supply
chain drift. This is something that current paper-based contracts can’t do.

Because drift in the supply chain indicates a change in the relationship between the parties,
computable contracts that are linked to the supply chain events can be used to ensure parties are
made aware that a change is occurring. This enables more proactive negotiations and the ability for
the contract to be adapted to the new reality – contractual position. The parties to the contract
affected by the change can agree to the proposed changes creating an addendum to the contract
that trues up the contract with the actual activity.

Alternatively, the parties can agree on a dispute settlement process to resolve the economic
impacts of the drift after the fact. When this is the case, other parties that are relying on the contract
progressing as planned, such as a financing entity, can be automatically notified. This may result in
a change in their terms or services and so forth. Computable insurance policies, for example, could
change premiums based on the actual risk instead of a blanket area of risk.

18

Economics in contracting

Finally, because the accounting can be automated as well as the contract, new forms of dispute
resolution can be used that are based on financial information about the transaction, project or
entities. This can include value sharing agreements that create an incentive system that balances
the risk and rewards from supply chain drift events.

For example, in construction a disportionate level of risk to the project can exist from a very small
subcontractor or low cost product. Identifying these areas of risk and designing incentive systems
into the contracts can be done in a way that does not require dispute resolution. This would create
significant incentives based on actual project economics to ensure the whole project comes in on
time or under budget. These could reward parties for recovering the critical path timeline or
shortening the duration of a critical path item to produce a buffer among other things.

The ability to recognize the contract no longer represents the actual relationship accurately is
critically important to monitoring risk –particularly financial and performance risk. Banks, insurance
firms and others can draft their contracts to react to risk that supply chain drift introduces within their
value chain. This means they can enable risk adjusted terms and pricing.

The data and accounting information available to the computable contract makes the creation of
incentive systems based on actual economics possible. In many industries, this will require entirely
new skill sets for those creating contracts, as economics is not a discipline most lawyers possess.
The involvement of economists in the design of well thought-out computable contracts means these
new contracts can focus more on incentive alignment instead of fear of enforcement.

In mortgages alone the effect could be monumental on society, that effect could even substantially
mitigate systemic risk in the banking community. Imagine a mortgage that does not use the threat of
foreclosure but allows the homeowner to forgo payments in a mortgage. Instead, equity in the
home could be used to make the payments without the need to forcefully remove the homeowner
from their home and the bank ceases risking selling that home at a loss. This is possible with
adaptive computable contracts.

The link between contracts and accounting
Legal and accounting are intricately intertwined with each other. Agreements between parties,
whether contracts or informal agreements, inform the basis for proper account coding under GAAP
or IFRS accounting rules. Agreement documents are a key part of the work papers used by an
auditor, regulators or courts to understand the intent between the parties in a transaction. How a
contract is written affects the accounting treatments, tax treatments, legal jurisdiction of the
transactions and legal entities responsible for a transaction.

Lawyers frequently take accounting treatments, tax, and audit principles into consideration when
drafting clauses to defend the treatment of their client’s financial statements or tax returns. Contract
clauses can be drafted to create specific accounting treatments, tax or jurisdiction advantages to
benefit one or more of the parties. A legal agreement defines when assets or liabilities must be
placed on, or taken off the books of a corporation.

A contract is an explicit agreement that works in combination with the law and regulations to define
the rights and obligations between parties in an agreement. These rights and obligations operate in

19

a workflow which is hopefully described in the contract. These can trigger accounting changes or
changes to risks when events cause transitions to a new state in the workflow.

The rights, obligations, risks and risk mitigations created by contracts must be understood by:

● Auditors to correctly determine reserves or footnote financial statements,

● Financing sources to correctly assess credit risk, and

● Trading partners or intermediaries to assess counterparty risk.

Computable contracts allow for the proper accounting treatment and tax categorization of
transactions for all parties to be set when the contract is created and makes them easily modifiable
over time as rules change. Since computable contracts are made up of standardized components,
updating contracts for changes in accounting or regulatory rules can be automated in most cases.
Even the identification of which agreements are affected by changes can be automatic. In addition,
components that deal with legal requirements can be locked down so they can’t be modified, to
facilitate compliance with regional laws.

By embedding the accounting treatments at GAAP and IFRS roll up levels into the computable
contract the treatment can be audited and signed off by an auditor in advance of any transactions
being processed. The result is that every transaction processed can be audited for accounting
treatment in real time. By modeling all parties accounting treatments in the standardized agreement
we can tag each transaction with a contract and then have it signed off by an audit firm.

By using several audit firms to do the same audit on the standardized contract we create a
computable contract which governs transactions which have already been audited and verified to
have valid accounting or tax treatments by external audit firms. The result is a substantial reduction
of the ability to commit fraud or mis-state the financial transactions on the books of a company.

As more and more computable contracts are used to govern the transactions of a company an
increasing amount of the work in an audit is performed in real-time and at a greater level of
granularity than possible in most financial audits today.

The entities that will have the easiest time adopting standardized contracts on 100% of their
transactions are SMEs. Many SMEs don’t have audited financials today, and even if they do they
are likely only done once a year, decreasing the value to banks and other financial parties. The
real-time nature of accounting that is possible with Sweetbridge Synchronized Commerce platform
enables audited financial statements every day. This can lead to entirely new types of working
capital and loan products with very low loan origination cost and real-time risk monitoring. These
financing services can be baked into contracts, then utilized based on the users' needs.

Computable loans can enable debt service to be done out of the payment flow in real time,
substantially reducing the risk of default while increasing payment data certainty. When these are
interconnected in a supply chain the associated risks can be lowered even further. All of this real
time information and analysis allows AIs to police network risk and can enable new forms of capital
formation, other than bank financing and private equity, for the underserved middle risk areas of
capital formation and debt financing.

Financial instruments like community investment bonds and other more creative structures become
more realistic.

20

All of this is possible when accounting and legal can be modeled jointly, but full benefits of
standardized computable contracts can’t be fully realized without preventing identity fraud.

The link between contracts and Identity
Contracts exist between parties who must execute the contract for it to be in effect. These parties
are either individuals or entities. Entities must have individuals sign the contract who are authorized
to sign on behalf of the entity or the contract may not be valid. Therefore a computable contract
must know that the signing individual represents one of the parties and that the signer has the
authorization to bind the entity in the contract.

The identity of a signer must be proven to be genuinely the party signing. Today we use signatures,
photo ids, notaries and in electronic environments usernames and passwords, mobile phone text,
and apps like google authenticator among other things. When dealing with signers for an entity,
bylaws, government company information sites, or board resolutions are frequently used to prove an
individual is authorized to sign or bind the entity contractually.

Validating parties in transactions such as auditors, regulatory bodies, laboratories, inspectors, or
certification entities are commonly used in commercial agreements to verify information. Weight
receipts, customs inspections, material receipts, warehouse receipts and other documents
frequently determine when events trigger state changes in contractual workflows.

Employees can call, text, email, or sign on through websites, submitting orders or sending invoices.
Yet how does a counterparty know any of this information comes from real sources or authorized
parties at those sources?

Increasingly barcodes, automated sensors, satellites and machine vision systems are used to verify
information instead of human beings, or to automate the entry of data signed by a human. Data from
EDI, EML, emailed excel spreadsheets and other file transfer mechanisms trigger transactions
under contract terms and submit invoices. Evidence that these data sources are valid sources and
are providing valid information must be proven in many commercial contracts. This means that
validations or calibrations of the sensors, machine vision systems, and proofs that the transaction
files that trigger computable contract state changes must come from valid sources. This means they
must be verified.

Validation of the identity of products can be crucial. Knowing the provenance of materials is vital in
many contracts. Knowing that the identity of the producer is genuine or the parts serial number is
valid can be very important in some contracts. Computable contracts may need to know how to
recognize valid identifiers on materials and products or in subsystems.

Individual Identity theft is a major problem in much of the world with more than 3 million cases per 5

year in the United States alone. A meaningful percentage of contracts are executed by parties that
are not authorized by the entity they represent to execute the contract. Contracts are signed by
admin staff on behalf of the authorized party faking their signature leading to significant cases of
embezzlement and fraud. Automated systems and sensors are increasingly the target of hackers
and technology fraud.

The people, entities, authorizations, automated systems, data sources and third parties all have
identities which must be verified to enable a computable contract to be signed and transactions to

5 https://www.iii.org/fact-statistic/facts-statistics-identity-theft-and-cybercrime

21

be automatically processed without the risk of fraud. Fraud now represents 6.05% of global GDP
and has doubled in the last 10 years. 6

The increase in fraud is partly attributed to the increased leverage criminals have by using
technology and the vulnerability of commercial processes as a result of insecure automation.

The Sweetbridge Synchronized Commerce platform can utilize all of the existing methods for
identity proof and verification but has new, more secure means of identity verification of people,
entities, devices, systems and things as well.

Device and system identification

The Sweetbridge platform supports the use of device certificates to recognize and authenticate
devices such as IoT sensors and personal devices such as cell phones or tablets. These certificates
can also be used with data sources that can support them to verify the identity of the sender of data
through APIs that support OAuth 2.0.

Individual authentication, authorization and delegation of responsibilities

The platform supports authentication of users’ identities through personal device biometrics and self
sovereign Know Your Customer (KYC’d) identities to tax identities such as a social security number
or national tax id within a legal jurisdiction. A computable contracting system must include methods
for proof of authorization for employees and representatives of companies. It can also support the
delegation of authority to third parties to act on their behalf such as a power of attorney.

Entity identification and proof of authorization

Entities are validated through Know Your Business (KYB) processes that can be shared between
entities and audited by both regulators and major accountancies. See our whitepaper on KYC and
KYB.

The link between contracts and settlement
Commercial contracts frequently define the settlement processes between entities. Settlement is
much more than just payment, it includes:

● The process, timing and terms of payment for goods and services,

● When and how assets are transferred between parties,

● When rights are triggered, transfered or cease to exist,

● When obligations occur and are discharged, and

● When and how risks are transferred.

For computable contracts to automate transactions they must accurately model these settlement
processes and provide the means for transfers to occur. The Sweetbridge Synchronized Commerce
platform does this by sharing common micro ledgers, which track and assure that settlement state
and accounting state changes are atomic between the parties.

6 The Financial Cost of Fraud 2019 - Crowe Clark Whitehill, together with the University of Portsmouth’s
Centre for Counter Fraud Studies (CCFS)

22

This means that an asset can’t be on the books of two parties at the same time. It also means that
there can’t be a difference in the purpose for a payment and the application of the payment on the
received books. This ensures precise timing when rights turn on and off, or when their obligations
arise or are discharged, simultaneously between all parties in a computable contract.

The importance of settlement finality
Settlement finality is typically used to refer to the finality of payments made through a payment
network. By “finality” we mean the transaction can’t be reversed even if the parties in the transaction
have a dispute, go bankrupt or fail. But this issue is much bigger than payment. This same issue
exists when any asset, right or value is exchanged and any obligation is discharged.

Knowing the date and time when an aspect of a transaction can no longer be undone is critical to
risk management. If something can be undone there is a risk it will occur. That risk has to be priced
into all economic activity as uncertainty. Uncertainty creates fear which reduces the desire to take
action.

This is a source of information asymmetry between parties. Information asymmetry always creates
fear and risk in economic terms. The greater the asymmetry the more one party can take advantage
of another party. The result in economic terms is lower liquidity, higher cost for risk and broader
opportunity for profiteering.

Information asymmetry and risk are at the heart of the lack of liquidity in commerce and contribute to
the practice of more powerful organizations pushing unfair and predatory contractual clauses off on
others. The greater the asymmetry the more each party must look out for themselves. The real loser
is our society and our economies which bear the brunt of the cost. It acts as a tax on everyone and
increases the cost of trade.

This has been understood by banks and capital markets for centuries. Modern exchanges and
payment networks are designed to create settlement finality. These parties use standardized
contracts and operate in legal jurisdictions where settlement finality can be created to reduce the
risk of transactions being challenged or undone. Modern capital markets, debt markets, credit card
networks, derivatives and commodity exchanges could not function without settlement finality.

Derivatives get their name because they are contractual rights derived from other rights. A stock
option for example is derived from the right of ownership of a stock. The value of the derivatives
market is larger than all other asset classes combined. Derivatives can’t exist without settlement
finality and they can’t be created without their underlying rights having settlement finality.

Few commercial contracts provide settlement finality and very few commercial contacts provide
finality of state transition in workflows. This means that the timing of when assets transfer, rights are
awarded or obligations are discharged is uncertain. The result is that risk is difficult to assess
accurately in real-time as we must wait before we can trust the results. This process worked when
we did everything with human intervention and review but won’t work when we turn things over to
computers to execute.

Finally, settlement finality is hard to create in many legal jurisdictions and impossible to create in
some. The value of settlement finality is so high that the Sweetbridge Synchronized Commerce
platform is designed for the creation of new types of exchanges and marketplaces, this platform can
use the existing capital market infrastructure to enable business transactions to have the benefits of

23

our capital markets and is one of the primary reasons for creating master services agreements for
ecosystem operators as part of the platform.

The link between contracts and laws, regulations and tax
Laws create common rights, obligations, rules or requirements that can be thought of as a common
contract that all individuals or entities have with their society within a legal jurisdiction. Regulations
add workflows or procedures with additional rights or obligations that act like a master SOWs within
a legal jurisdiction defining roles and responsibilities of parties in commerce. Tax rules add a set of
obligations, procedures and settlement processes that act like an additional party that is part of each
agreement in a contract.

Some laws can be overridden by contractual agreement between the parties while others can’t.
Regulations rarely can be overridden by contract. Tax treatments are highly impacted by how a
contract is written.

In order for contracts to fully express an accurate data model of an agreement they must take into
account applicable laws, regulations and tax rules. The Sweetbridge platform is designed to allow
for the encoding of laws, regulations and tax rules in jurisdiction master services agreements related
to asset classes, industry segments and types of commercial activity.

These jurisdiction master services agreements can only partially model many laws, regulations and
tax rules because they suffer from the same weaknesses as current contracts. However, regulatory
bodies and government entities could use the same legal component tools to create regulatory
enforcement technology (reg tech) that would be able to be accurately modeled in the same way as
new computable contracts. The benefit to society would be that rules would be less ambiguous,
reporting and regulations enforcement would be automatic.

The effort to create computable laws, regulations and tax rules for society would result in an
immense reduction of asymmetry and friction. The effect would be substantial economic growth and
greater prosperity for the societies which embrace this approach. The reduction of corruption alone
would result in increases in tax revenue without increasing tax rates.

Another benefit would be to make it possible to model the effects of changes with precision and
increase clarity for everyone in a society.

Sweetbridge realizes how long it will take to get governments to adopt new computable laws,
regulations and tax rules. Therefore, it has designed a concept of ecosystems into the platform
which can start to create master services agreements that bind participants contractually through
ecosystems’ laws, regulations and tax. This allows commercial bodies to forge their interpretation of
legal and regulatory requirements into common “laws and regulations” with their interpretation of tax
rules into computable contracts.

These bodies can partner with governmental approval and oversight to create micro economies with
their own computable laws, regulations and tax collection processes as an early step to make it
easier for governments to adopt these new approaches ultimately. This also has the benefit of
allowing real commercial players to participate in the formation of these in a real citizen led
governance process which is likely to be strongly supported by its participants.

24

Finally, these ecosystems can even compete with each other or transcend legal jurisdictional
boundaries. This already occurs with much of the capital market infrastructure of the world.

Ecosystem as micro-economies

The Sweetbridge Synchronized Commerce platform is designed to allow consortiums to form
ecosystems which have their own “laws” (ecosystem master services agreement), “regulations”
(workflows) and “taxes” (fees). Computational contracts allow us to create ecosystems that
individuals and entities can opt into regardless of legal jurisdiction. These ecosystems can have
their own “enforcement” and dispute settlement entities with processes that can include dispute
resolution, penalties and even loss of ability to participate.

This is nothing new. Guilds, trade associations, commodity exchanges, stock exchanges and other
trade boards have long had some of these abilities. The difference is that computable “rules” and
contracts allow us to do this to a level never before possible. They also allow us to do this in such a
way that the corruption, so rampant in these bodies, can be made either impossible or transparent.

These ecosystems can create a much more resilient form of commercial structure which would
serve our societies far better than major corporations as the pace of change continues to increase.
These ecosystems can function with some of the same abilities as economies. They can have
shared capital formation via ecosystem bonds or equity much like countries can have shared capital
formation via treasury bills. They can have pooled risk management production optimization like
major corporations.

Standardized computable contracts and accounting treatments audited in advance would enable the
ecosystem to have common banking and insurance functions at significantly lower risk and cost.
Trade within the ecosystem could even occur without currency by moving assets directly between
balance sheets, greatly reducing the need for working capital and increasing liquidity. Major
corporations and countries already trade trillions of dollars in assets annually without using
currency. Banks exchange tens of trillions in derivatives monthly without using currency.

Partially self governing utility

The Sweetbridge platform is designed to fuse legal, accounting, and financial services such as audit
or insurance into an ecosystem utility. This utility can be governed by the ecosystem itself and be
operated as either a for-profit or membership owned entity. The goal is to enable shared
infrastructure that reduces the cost of administrative, legal, financial and accounting processes.

By using computable accounting, contracting and workflow processes we can transform trade
organizations and turn them into administrative and financial utilities. By giving each member of the
ecosystem shares in the utility we can create shared value that has network effects with valuations
of a tech unicorn – Apple, Google, etc.

Sweetbridge is enabling ownership through something other than equity: a royalty share. We issue
the royalty shares based on economic contribution to the ecosystem. Thus we can create a new
type of entity that can create new value for its members without changes to equity structure that can
result in multiples of the value of their existing organizations. Sweetbridge has tokenized this royalty
share into a digital asset that can be traded, creating a new form of liquidity and value for its owners.

25

Sweetbridge has started test marketing this concept in the construction industry within California.
This is being done using economic models that predict the effects of adoption for each entity on
their business based on assumptions. The results created a doubling of enterprise value on average
for participants. We believe this will be more than enough incentive to change from current
processes of contracting to new computable contracts.

Ecosystem links – Contract exchanges
Value chains for any business are complex networks that will cross multiple ecosystem boundaries.
This means that special computable contract exchanges will be required to connect the commerce
in one ecosystem to the commerce in another ecosystem. Additionally, the same issue exists
between legal jurisdictions as differences in laws make it cumbersome or next to impossible to
create a single agreement that works under multiple bodies of law.

These problems are not new as they exist today in any legal agreement that spans more than two
parties or between legal jurisdictions. Payment networks for credit cards solve both of these
problems by separating agreements into layers and forcing a common settlement agreement. The
jurisdictional differences are handled by setting up a clearing house that each payment processor
contracts with in a single location such as London.

Each party that works with the payment processors legal jurisdiction has a separate agreement.
This adds an additional level of abstraction allowing the jurisdictional differences to be separated
from the business agreement. The Sweetbridge platform is being developed to enable an
ecosystem of ecosystems and jurisdiction-based exchanges to facilitate the conversion of trade
between legal jurisdictions and across ecosystem master agreements.

This ecosystem of ecosystems will provide the common backbone for cross ecosystem transactions
much like trade agreements provide a common framework for trade between economies. This
means that countries could actually use computable contracts and accounting for their trade
agreements. The result is that very fine grained inter-country agreements with automatic monitoring
and verifications start to become possible. The impact this would have on reducing friction in trade
could be quite significant.

The link between contracts and registries
Registries are frequently used to store knowledge about who owns an asset and what rights they
have granted. Centralized common registries are used today in everything from property to stocks.
These registries always have a scope such as an entity, exchange, or legal jurisdiction. In order for
computers to automate transactions in a computable contract they will need the ability to interface
with existing and new types of registries.

Common registries are critical to being able to verify and atomically change the ownership of an
asset in the real world. The easiest of these to understand is real estate. Contracts related to the
sale of real estate must be able to validate current ownership, determine what rights have been
granted and what unsettled obligations against the property exist.

Computable contracts must be able to interface with and change the state in these registries to fully
automate state change. The platform allows for manual state changes so this is not an absolute
requirement but the ability to support registries is much more important than simply interfacing with

26

legacy manual processes. Stock exchanges, commodity exchanges, and even some automobile
registries all have highly automated registries.

The more automated a registry for an asset class, the easier those assets can be used to secure
debt and create new forms of liquidity. Currently there are significantly more illiquid assets in the
world than there are liquid assets. In fact, if all assets were liquid, had a means to do price
discovery, and existed on registries, there would be less need for currency in some business to
business transactions.

The reason for this is that assets could be traded instead of one party needing to sell assets or
borrow funds to raise the liquidity in currency to purchase another party's asset. Banks do this today
with derivatives trading rights and obligations worth trillions of dollars every month without currency.
Registries of assets would allow options and other types of derivatives to be used more widely with
products and even services.

Registries are also important because they allow rights to be separated from assets which almost
always unlocks unrealized value. The right to buy a stock at $5.00 has a value even if the stock is
trading at $4.00. The sale of a 90 day option for $0.10 does not decrease its current $4.00 value but
it provides the owner of the stock with two ways to monetize the stock, one is to sell it for $4.00 the
other is to sell an option for $0.10.

This subdivision of rights is the basis of all derivatives. These always need some form of registry to
protect the sale of the underlying asset or right without the right that has been sold to someone else
being honored. They also protect the buyer. Registries allow the buyer to discover what rights have
been granted on an asset. This ensures the buyer can discover if one or more of an asset’s inherent
rights have been granted to another party. For example, the mineral rights having been sold to
someone else on a property the buyer is purchasing.

Registries can take many forms but the Sweetbridge Synchronized Commerce platform is designed
to allow the creation of asset or right specific registries by asset class within a legal jurisdiction. The
reason this must be done at a jurisdictional level is the laws governing rights may not be the same
from one legal jurisdiction to the next. Therefore, it is impossible to transfer some assets and rights
between legal jurisdictions without taking legal, regulatory and tax implications into account which
might require a different computable contract or changes to clauses.

Tradable rights and obligations
One of the most under appreciated benefits of computable contracts and registries (ledgers) is the
ability to tokenize assets and rights. By tokenize we don’t necessarily mean a blockchain token,
instead we mean a moniker that can be used to uniquely represent the asset’s or right’s ownership.
Regardless of what technology is used, there is substantial value in an ability to trade assets and
rights on those assets in a tokenized and particularly a fractionalized manner.

The ability to create liquidity through transferable fractions of ownership in rights and obligations can
release the same benefits to commercial agreements for ecosystems that derivatives released in
financial markets. The ability to hedge and pool risk such as the ability to diversify supply chain
procurement in light of Covid-19 would be extremely valuable to decreasing supply chain disruption
risks.

In the current legal environment many contracts limit the ability of parties to transfer or subcontract
rights or obligations. The reasons for this are many but the effect is that the value available to all

27

parties is reduced. The Sweetbridge Synchronized Commerce platform is being designed to enable
computable contracts with componentized rights and obligations. Computable contracts and
ecosystems allow us to minimize many of the reasons for resisting transferable rights and
obligations historically.

One of the biggest reasons for this restriction is the belief that one party will be able to realize a
significant financial gain without the other party participating in the value or opportunity. Since it is
difficult for each party to envision every possible way someone might extract value from a contract
in the future, many contracts today tend to be written to require the counter parties approval.

The result of current practices unfortunately is that the counterparties risk on investment in
developing an additional value is too great. This comes from a failure by all parties to understand
basic behavioural economics. The current practice actually prevents the very activities that would
help the parties participate in greater value. The reason this is true is that the counterparty can
simply veto or hold the other party hostage to unfair terms.

Almost all capital market infrastructure is dependent on the ability to separate and trade rights on
other rights or assets. The ability to do this has actually led to an increase in value of all underlying
assets. The conversion to standardized computable contracts is an opportunity to correct these
errors and unlock trillions of dollars in new value.

The concern that others may profit on my right or obligation in some unexpected way and fail to
share this value or introduce risk can be solved by computable contracts and ecosystems just as
they are by exchanges. The ability to do price discovery or write contracts that allow actions within
measurable parameters that are validated by external parties enables new abilities to tap
opportunity or manage risk.

Imagine a contract with a requirement for the delivery of 200 specific products on a specific date for
a construction project. Let’s assume the obligation is for something on the critical path of the
construction project. If it is not delivered on the specified date the project will be delayed at a cost of
£100K per day. If the obligation for the product on the date is made tradeable and is specified in
sufficient detail, a new type of insurance would be possible that would protect the project from being
delayed due to items not being delivered on time. If the obligation is transferable, and product
progress is tracked based on risk of non-delivery, some or all of the obligation could be
automatically transferred potentially at a much higher cost to someone else with the difference paid
by the insurance company to prevent a claim payout.

Contracts that enable value sharing can also be created with computable contracts and accounting
within the Sweetbridge platform that actually incentivize parties to find new ways to generate value
from current and existing assets. See the Sweetbridge whitepapers on the tokenization of assets
and rights, the tokenization of assets and the tokenization of rights for a better understanding of the
value that can be released in these areas.

The link between contracting and data security
Contracts, more and more frequently, contain clauses on the ownership of data and requirements
for data security or access. To make computable contracts with clauses that place rights or
obligations on data, the computer model must be able to govern access to data. This means that
computable contracts must in some cases have an ability to know what data is “confidential”,

28

“owned”, etc. This requires a way of modeling ownership rights and access rights to data that can
be enforced by contract terms.

This is one of the strongest non-economic arguments for forming an ecosystem data utility that can
police data held in trust by one party for another. However, the history of creating a centralized
repository of data is not great because it becomes a honey pot target for hackers or compromise.
Once data is stolen it can easily be transferred anywhere and to any number of places. Encryption
of data helps but still may have weaknesses.

The Sweetbridge platform enables a new paradigm of data sharing. Each party can retain its data
within their firewalled control if desired. Instead of sharing data by placing it into the hands of other
parties, the platform allows code to visit the data instead. This allows for interesting new types of
algorithms that can prove something is true but without revealing more information. For example, a
vendor could prove they have 25 units of a product in stock without revealing how many units they
have in total.

This also allows computable contracts to enforce control or ownership of data which is required to
enable data access and ownership clauses. Policing these clauses would be near impossible
without the use of ecosystem data utilities that provide this as a standard service. The cost to retrofit
existing data infrastructure would simply be too high.

29

Contracting model
In the prior section we have presented countless reasons why computable contracts will be too
costly and require too much infrastructure to become widely used in commerce outside of shared
infrastructure provided by ecosystem utilities. Unless computable contracts are integrated into
common commerce infrastructure they will stay relegated to special uses or will be used only to
partially automate commerce in the near future. This is why the Sweetbridge Synchronized
Commerce platform is designed to provide the infrastructure to make ecosystems work.

Sweetbrdige strongly believes that new intermediaries such as ecosystem utilities will unlock so
much value that computable contracts will first be widely adopted within these decentralized
intermediaries.

Some centralized industry intermediaries exist today but they are typically weaker industry bodies
that offer a fraction of the value of the ecosystem utilities being described. However, these existing
bodies could quickly be transformed into decentralized ecosystems with common legal, financial,
accounting, data security and insurance provided as a utility. In other cases, ecosystems will
emerge in green field areas of commerce which have no legacy intermediaries that must be
transformed and will develop from scratch.

The business model infrastructure of internet marketplaces are still relatively nascent so some of
these will be able to convert into the new ecosystems. Some of these ecosystems may some day
rival an Amazon or Alibaba for economic activity but without being centralized in their control.

The ecosystem utilities are only possible due to the creation of computable contracts which do not
need to be centralized, but do need common infrastructure. Like electricity needed common
distribution lines, current flow (AC vs DC) and voltage levels to make electricity useful, these utilities
need common infrastructure. However, this infrastructure can be provided by networks of
independently managed nodes that provide the common services.

These new decentralized intermediaries will be very different from industry intermediaries that
extract value and are being displaced in so many markets. The new ecosystem utilities will offer
smaller organizations the ability to access some of the benefits historically only available to a major
corporation or national economy. They will provide new value only available by synchronizing
commerce via common infrastructure that removes cost, friction and risk. Instead of adding cost and
fostering information asymmetry these utilities will do the opposite.

For all of these reasons, intermediary vs party-to-party contracting is likely to represent the vast
majority of use cases for computable contracts. The Sweetbridge platform is designed to support
both. However, a significant focus has been placed on the need for intermediary-based master
services contracts that would be accepted as the terms of use by members of an ecosystem.

Platform master services contract
A master services contract provides a set of terms that will apply to all agreements and
subordinated contracts between parties. Depending on its design, these terms may or may not be
able to be overridden by sub-contracts or SOWs. The SOWs typically define common terms and
conditions that will apply to subordinated agreements without needing to be renegotiated. These are

30

extensively used in corporate contracting when there will be continual contract updates or new
SOWs between the parties over time.

The Sweetbridge platform intends to provide an open source Platform Master Services Contract that
can be used by various industries and jurisdictions as a template to create ecosystem master
services contracts. The intent is to design these with a broad representation of disciplines to make
them as useful as possible. Computable contracts require a different set of concerns to be
addressed than the existing contracts in use today.

The need for broader skill sets when creating computable contracts could limit their adoption.
Therefore, standardized master services contracts are one way Sweetbridge plans to address this
barrier. The other is standardized legal components’ provisions described later in this document.

Reference master services contracts
Reference master services contracts are initially being developed for several major industry
segments in a few reference juridictions. These master services agreements were selected in the
following areas based on existing consortiums and team experience:

● Food in the UK and US

● Construction in California and the UK

● Insurance in the UK and US

● Manufacturing supply chains in the UK and US

● Commodities in South Africa

● Payment processing in the EU, UK and US

These areas provide the initial reference contracts that will be used to model the creation of master
services agreements in other industry areas and legal jurisdictions. The initial master services
agreements will be designed for computable ecosystem contracts or party-to-party contracting.
However, the Sweetbridge project is also designing master services contracts for party-to-party
computable contracts.

Master ecosystem contracts
Computable ecosystem contracts are master services contracts and terms of use for the legal entity
that represents an ecosystem who can act as a trusted intermediaries within the network of
ecosystems. These entities can be compared to exchanges and central clearing houses that exist in
the capital markets. The difference is that anyone with the ability can operate an ecosystem
because the Sweetbridge platform is decentralized in its settlement and accounting activities.

These computable contracts are analogous to credit card network contracts except all parties in an
ecosystem will share common master contracts within a legal jurisdiction. This means that parties
contract with the ecosystem node under the master services contract. Much like using Amazon or
Alibaba would require each party to accept a master services contract in their terms of use. These
ecosystem legal entities collect fees and generate profit by providing common services needed to
create a higher level of settlement finality, lower risk, shared data security, greater access to capital,
etc. Ideally ecosystem entities would be non-profit or member run organizations.

31

These ecosystem entities will collectively run the distributed registries that are needed to verify and
manage tokenization of rights or the creation of derivatives for their ecosystem. This will allow
entities within the ecosystem to work together without the need to negotiate most of the
non-transaction specific terms. Because most existing B2C and B2B transactions don’t have
contracts it should therefore be relatively easy to transition to ecosystems under standardized
computable contracts for a specific industry.

Common statements of work
Common statements of work are being designed for use with either the ecosystem or common
master services contracts to define a unique work product or service. These SOWs are made up of
workflows, states, rights and obligations that reflect common practices within a culture and industry.
The objective is to use pre-built components to construct new SOWs.

Statements of work primarily define requirements, processes and rules. There are only a limited
number of processes and rules in any industry because the parties working together can’t do
everything uniquely. For multiple parties to create efficiency within coordinated activities they must
use common processes and operate under common rules. This means there are relatively few
actual processes and rules within any industry and culture combination.

Product or service specifications are also highly standardized in their structure, but not necessarily
in their specifics. The very nature of product and service differentiation means there is almost an
infinite number of specific requirements. However, there are shockingly few methods of
classification systems that can be used to describe a product or service. This means there can be a
high degree of commonality between the components that make up SOWs within an industry, but a
wide variety of SOWs themselves.

Ecosystem statements of work
Ecosystem statements of work (SOW) serve two purposes. The first is to provide a library of
common business specification methods, processes and rules supported in the ecosystem for
ecosystem contracts. The second is the creation of ecosystem regulations. By creating standardized
workflows, states, verifications, and certifications an ecosystem can create comparable products
and services with a minimum level of quality or functionality.

Therefore, ecosystems can use ecosystem SOWs to create quality, data, reporting, labeling or other
requirements that level the playing field and define minimum levels of operation within an
ecosystem. This means that ecosystems can ensure members can be trusted to meet these levels
of quality or performance. These can also be used to level government mandated requirements
between legal jurisdictions. A food ecosystem in the EU might want to do this for members with
organic produce that need to be able to be sold to both the EU and UK post Brexit.

Ecosystem SOWs can also be used to provide centralized financial services such as low cost
receivables financing or supply chain financing to ecosystem members. By incorporating the
requirements of the financing party, ecosystem SOWs can be added to any agreement to provide
working capital.

Ecosystems would also use common SOWs for ecosystem services when the Ecosystem acts as a
utility or provides common services to members.

32

Ecosystem interchange contracts
Ecosystems need a means for allowing members to trade with other ecosystems or within the same
ecosystem across jurisdictions. Ecosystem interchange contracts define how contracts that span
ecosystems are handled. They are notionally similar to a trade agreement between countries,
defining the rights and obligations of the ecosystem to another ecosystem. These contracts are
written between ecosystems, not between the parties contracting the transaction.

For example, an ecosystem contract between parties in the food industry in one country’s
ecosystem may need to source food from parties in another country's food ecosystem. The two
ecosystems can contract together forming a greater level of trust and settlement assurance between
the parties. Each food producer then contracts with their local ecosystem instead of with each other
and the ecosystems rely on the contract between the ecosystems to handle the transaction.

By isolating the legal jurisdictional issues and any dispute resolution from the commercial
agreement, the parties can deal within their legal framework locally. The computable contracts only
need to manage issues within one legal jurisdiction. Issues such as counterparty risk on payment
can be managed by the ecosystems.

Ecosystem fabric components and contracts

To facilitate transactions between ecosystems the Sweetbridge network will provide an ecosystem
of ecosystems – the network ecosystem. This network ecosystem will act as a shared utility
providing a common fabric or net for all ecosystems much like shipping containers provided a
shared logistics infrastructure for international trade. This ecosystem's purpose is to provide shared
contracting components, utility services and data services for all ecosystems to simplify their
establishment and allow them to interact with each other.

Ecosystems can therefore contract with a network ecosystem to handle interactions with other
ecosystems as a default. This prevents every ecosystem from having to contract with every other
ecosystem. Instead, they only need to contract directly with another ecosystem when it results in an
advantage not available in the common infrastructure.

The network ecosystem will also provide a global governance and dispute resolution process
between ecosystems. This can be done across legal boundaries similar to how it is done in payment
networks or via maritime law in trade today.

Finally, the common network ecosystem makes it an ideal place to provide shared computable
contract components to the widest possible number of use cases. Of course this is only true when
they don’t need to be industry or culture specific. Components developed for the network ecosystem
will therefore have the highest potential use, which should also mean that their royalties will be the
lowest.

These economics should incentivize substantial development of components for the shared fabric or
network, spreading the cost of development and maintenance over the largest number of
transactions.

33

Contract templates
Writing custom computable contracts for each agreement between parties will be impractical in the
vast majority of cases. Therefore, the Sweetbridge platform uses contract templates. Contract
templates can allow anything from simple fill-in-the-blanks types of templates to AIs that create
contracts using a robust set of answers to questions.

Regardless of the complexity, contract templates are parameterized contracts that use wizards to
create the contract. These templates allow the parties to provide parameters, answer questions or
select options. These parameters, answers and selections allow the computable contract to
generate a written contract from a data model. The printed contract is not the computable contract.
Instead, it is the user interface used by lawyers and courts. It expresses the computable contract in
a way these parties can understand.

Templates are created by using computable contract components. The skill to create a new
template varies depending on its complexity but in many cases is something a lawyer should be
able to do with a limited amount of additional training. The user interface to populate the template
can be automatically created by the platform without the need for programming.

However, in some cases a customized wizard may be needed or advisable. This is particularly true
for templates designed for users who will not grasp the implications of some of the answers to
questions without more information. Though the platform will generate a default wizard, a
custom-built wizard can always be created by directly writing to the template parameter APIs. This
enables very robust customization wizards built on AIs to be used when desired.

Summary
Computable contracts, particularly when paired with ecosystems, offer the possibility to significantly
change the world we live in and how we engage in commerce. They provide an opportunity for us to
revisit the original social contracts that underpin our economies. They will allow us to create a new
form of legal entity and ecosystem that members can own. An ecosystem where the benefits from
the value members create by participating are shared with the members instead of being extracted
by third parties.

If done well these ecosystems offer the promise of a new level of economic freedom. Brought about
by a new allegory for a city: a virtual city that has its own micro-economy. An economy where each
participant shares in the ownership earned through co-operative participation.

The creation of this open source platform, the Intellectual property within the thousands of its
components and the ecosystems themselves will take years and require many parties working
together. This is a big change, but it is the next logical step (for technology) beyond social media
and internet shopping. Incorporating or enveloping the digitization of law, regulation and the whole
of commerce.

We are very aware that this is a grand vision. As founders, our goal is to be the spark that lights the
fire of transformation in the economic sector. We are an ever expanding group of people and
organizations who have a like-minded vision of building this platform as a gift. That’s why the
platform will be fully open sourced and open to all.

34

We are creating a new way of doing commerce based on win/win instead of win/lose. Commerce
where ecosystems compete but organizations cooperate. Ecosystems where firms can come and
go, but value is preserved for the participants.

Why? Because, there is a better way.

Discover the power of together.

Sweetbridge.

35

Appendix A – Computable Contract Implementation
Computable contracts are generated by computable contract templates. These computable
contracts no longer take configuration and can be used to execute transactions between the parties.
Contracts can be printed but ideally are not signed on paper but using a Sweetbridge digital
signature on their personal device. The printed form of the contract is the user interface to the
computable contract for lawyers and court officials.

These compuntable contract templates are created from reusable contract components. The
components are assembled via a simple Component Composition Language (CCL) to create these
templates.

Common contract components
To reduce the work of creating computable contract templates the platform is being designed to
support standardized legal components. These components can be bound together to create
computable contracts without requiring the specialized skills needed to create the components
themselves. Componentization allows for much greater diversity of agreements to be created
without composing new computable contracts from scratch.

This is particularly important when linking these components with other areas of commerce such as
accounting, security, settlement, supply chain events, data, etc. By creating reusable components
that come pre-integrated or with pre-build interfaces to the things the computable contract must
interact with, we substantially reduce the work while increasing the value of the components.

To facilitate this integration, common components must publish interfaces for data they require or
provide.

Ecosystem components
Ecosystems will frequently need to create ecosystem customized components that are
pre-integrated with ecosystem platform functionality, such as supply chain events. These
components can be created from scratch, but most of the time can simply wrap standard network
ecosystem components such as workflows, with integration to unique ecosystem events.

Because Synchronized Commerce provides a common platform for ecosystem participants,
components only need to be written and then implemented at most once per ecosystem. For
example, an ecosystem might contract with a set of logistics providers to provide logistics services
to the ecosystem. These providers might provide shipment status messages to an ecosystem event
monitoring service. A workflow component that monitors the shipment pickup and delivery for
contracts with suppliers might be integrated with these events. Therefore, as long as these services
are used, the events would trigger state changes in the shipment within workflow components.

By collectively utilizing a common set of logistics service providers, the ecosystem participants have
no integration work they need to do to receive these benefits. For the logistics providers they obtain
a collection of customers with a single operation, administration and information interface which
lowers their cost. Both the ecosystem and the logistics service providers win and both can benefit
from the lower cost.

36

Parameters
Parameters are formally defined input variables or data structures to components. Each component
can accept zero or more parameters. Each component must provide the name, data type and a
sample printed use of the parameters in the component.

Definitions are used to provide a printed definition of a parameter to a component. For example, a
parameter seller might be defined in the print definition of a contract as “Gardener”. By defining the
parameter as the definition the platform knows to use the word “Gardener” instead of the parameter
name “seller”.

Component hierarchy
The following section outlines the various types of common components within the platform. Each
component type can be combined with only certain other types of components. For example, State
Components can only be applied to Workflow Components.

A hierarchy exists within categories of components in the Sweetbridge platform. This hierarchy is
based on the natural hierarchies that exist within good contracting practice today. Therefore, each
type of component can be applied only at specific levels of the hierarchy. A Contract Term that says
something takes effect at a specific time and ends on a specific date can not be applied to a
Contract Role component because it makes little sense.

The meaning of a Contract Term is that a Contract, SOW, Workflow or Clause only applies during a
period of time. The meaning of a Role is to define the part a party is playing within a Contract, SOW,
Workflow, or Clause. There is no valid need for Roles to change within a Contract Clause, parties
can change but not the role the parties are playing. It would be very difficult to use language to write
a single non-ambiguous clause with a role that changes in the middle of the clause. If done, it
would imply some kind of change to the clause. It is less ambiguous and simpler to use two clauses
that apply at different time periods.

The hierarchy structure can be thought of as looking like this:
● Master Services Agreement can have

○ 1-n Clauses
○ 2-n Roles
○ 0-n Contract

■ 1-n Clauses
■ 2-n Roles
■ 0-n SOW

● 0-n Clauses
● 0-n Conditions
● 2-n Roles
● 0-n Workflows

○ 0-n Conditions
○ 2-n States

■ 0-n Clauses
■ 0-n Conditions
■ 1-n Events

37

● Conditions
■ 0-n Rights | Obligations

● 0-n Clauses
● 0-n Conditions
● 0-n Risks

○ 0-n Clauses
○ Conditions
○ 0-n Risk mitigations

■ Conditions
■ 0-n Clauses

Since components need to be able to be overridden under various circumstances, the Binding
Language is designed to deal with precedence in mind. By default, the Sweetbridge platform uses
the “specificity overrides generality” design pattern for order of precedence when it comes to
components. This is the same pattern used in object oriented programming.

That means that the Term defined at the highest contract level of a master services agreement does
not need to be redefined at each contract, SOW or Clause under the master services agreement.
Components can have one or more attributes which can be defined as fixed, meaning they can’t be
overridden. Fixing a component or a component attribute at a specific layer of the hierarchy means
the component or attribute can’t be overridden by layers below that layer.

Therefore, if the master services Term uses a period based Term with a start date of Jan 1, 2020
and fixes that attribute, that date can’t be overridden by an SOW to have an earlier or later start.
This could lead to a problem if an SOW was added to take effect 6 months later on July 1st, 2020.
Therefore, special constraints can be supported by attributes of components that prevent a
parameter from being outside of a range or domain.

In effect, the attribute value can be further constrained at a lower level of the hierarchy but can’t
have a constraint broadened or replaced. This allows the master services agreement to have a start
date in the Term component that is Jan 1, 2020 but a wizard on the contract template would not be
able to set the SOW term start date to Dec 1, 2019 because the Master Service term is set to Jan 1,
2020. This prevents inconsistencies between subcomponents within a contract.

Component composition language
Components are bound together using a Component Composition Language called CCL. This
composition language allows the output from one component to be used as input to another
component. For example the output of the roles component might be a homeowner and contractor
but a component in the template might take the parameters of buyer and seller. CCL also allows the
components to learn what they should call the parameter in the printed version of a contract clause
if not defined by a definition. This means that formal definitions are only needed to override this
behavior.

Common component classes
Components are organized into classes. These classes describe the role or meaning of each
instance of component class.

38

Definitions
Definitions are non-computable components that can be added to any other component. They allow
parties to define terms used in print versions of the document. These generate clauses, providing
clear and detailed explanations of key words and/or phrases used within and for the contract,
generated as pronouns starting with capital letters e.g. Buyer or Seller.

They also serve as a translation to remap parameter names used in the computable components. A
parameter named “Buyer” might be defined as the “Patient” in a medical contract. Definitions allow
the default names used in components to be overridden and replaced with another name in the print
version or template parameters.

Definitions are purely for the human users of a component, contract template or contract. The
defined terms in a contract can therefore be programmatically generated using static analysis of the
component parameters and their parameter definitions.

Intent
Intent components are special non-legal computable components that can be added to any other
component. They allow the parties in a contract to describe the intent of the legal language and
behavior of the component. Intent is used both in human based dispute resolution processes and
component documentation, but does not affect the behavior of a contract or component.

Contract roles
Contract roles are the roles of parties in a contract. This component simply identifies the roles
assumed by the parties. These must be formally defined as they are parameters to many
components. As discussed above these can also be remapped to more industry or culturally specific
terms in the print version of contracts.

Roles can be applied to Contract Templates, SOWs, Workflows, Rights, Obligations and Risk
Mitigations. The default roles of buyer and seller can be used in most two party contacts when the
print names can be overridden through definitions.

● Counterparties:
○ Buyer – The legal entity buying something in a transaction defined in a component or

contract.
○ Seller – The legal entity selling something in a transaction defined in a component or

contract.
○ Escrow agent – The escrow or trust agent to use on transactions defined in a

component or contract.
● Third-parties:

○ Inspector – An inspector for something in a transaction that must verify or grade
something defined in a component or contract.

○ Insurer – A provider of insurance defined in a component or contract.
○ Logistics service provider – A logistic service provider to be used at a milestone

defined in a component or contract.
○ Vendor – A supplier of goods or services defined in a component or contract.

● Financial parties:

39

○ Bonding party – The party providing a bond in the component or agreement.
○ Financing provider – A financing provider to be used at a milestone defined in a

component or contract.
○ Guarantor – A party guaranteeing or warrenting something defined in a component

or contract.
○ Settlement provider – The party and legal jurisdiction of settlement activity defined

in a component or contact.

Commencement clauses

When used at the contract level, these components create commencement provisions that introduce
and identify the parties and their respective functions within the context of the given contract

Term
The effective term that governs when it starts and ends, how to determine if Clauses, Workflows,
SOWs, Pricing, Contracts or Contract Templates apply. There are several predefined contract
components for terms that are built into the platform:

● Default – a default term that says this contract applies whenever a transaction occurs
between the parties.

● Event – this contract applies to all transactions related to a specific event such as a
conference.

● Project – this contract applies to all transactions related to a specific project.

● Transaction – this contract applies to a single transaction.

● Duration – this contract applies to a date range that starts at a specific point and optionally
ends on a specific date.

● Periods after – this contract applies from this date through x periods after the last
transaction.

● Combination – a combination of inclusion and exclusion of the other terms using boolean
logic (And, Or, & Not).

Scope
The jurisdictions, entities or business activities the contract or SOW covers. Scope can be applied to
Clauses, Workflows, SOWs, Pricing, Contracts and Contract Templates. There are several
predefined contract components for scope that are built into the platform:

● Legal Location Description:
○ Address – 1 to n physical street address locations to which this component applies.

○ Assessor's parcel number – 1 to n assessor’s parcel numbers.

○ Surveyor’s description – 1 to n surveyors descriptions.

● Geo location:
○ Geographic areas – 1 to n geographic areas, cities, counties, states, provinces, or

administrative subdivisions for a role to which this agreement applies.

40

○ Region – A combination of inclusion and exclusion of Geographic areas using
boolean logic (And, Or, & Not) for a role location. For example, “deliveries in New
York State excluding New York City”.

○ GPS box – 1 to n GPS boxes for a role location to which this agreement applies

○ Legal Jurisdictions – 1 to n Legal Jurisdictions of a role to which this agreement
applies.

● Entities:
○ List of entities – 1 to n entities in a role to which this agreement applies.

○ Subsidiaries – 1 to n subsidiaries of a role to which this agreement applies, such as
a list of explicit subsidiaries of a holding company.

○ Partners – 1 to n join ventures, consortiums, SPV or other business partnership
structures in a role to which this agreement applies.

● Alliance:
○ API – a customer, supplier, referral identified by a call to the “is name a”, “is location

a” or “is source a” API for a role. For example, alliances are heavily used in internet
referral programs such as click ad agreements.

○ List – a customer, supplier, referral identified by a look up in the “is name a” or “is
location a” list for a role.

Workflows
Workflows define processes between parties, their states (or milestones) and determine when rights
or obligations turn on or are discharged. All contractual relationships have some form of formal or
informal workflow though sometimes it might be hard to see this when reading a contract. Also,
contracts frequently have highly ambiguous or only partially defined workflows.

However, to be a computable contract the workflow must be articulated in a precise manner.
Workflows break down into a set of possible states or milestones. Transition from one state to
another is controlled by events. These events can be as simple as a statement by one party that we
are now in x state, or it can be controlled by a sophisticated set of notifications from multiple sources
about the status of something complex, such as a container being shipped around the world.

Even an informal workflow can be broken down into states that are stated to exist by one or more
parties, if nothing else. For example, the work is “started” or the work is “done” may be nothing more
than a party indicating that a state is currently true – i.e. “done”.

Since many state transitions and workflows are informal, the Sweetbridge platform provides a
configuration driven App for human triggered events. This App allows the parties to define the state
of a workflow from their personal device. This approach makes it easy to start using computable
contracts and slowly migrate to IoT devices, satellites, ERP systems etc. that provide event
information automatically. Even in highly automated environments it allows properly authorized
humans to override the state to deal with cases where automation fails.

Workflows can be built out of existing workflows by adding or removing states and events in a
similar fashion to subclassing in object oriented programming. Workflows can also trigger other

41

workflows. Over time Sweetbridge expects a very substantial library of useful mini-workflows will
emerge.

States
In a computable contract workflow, states may be either informational or contractual. Contractual
states always have rights with corresponding obligations for the counterparty. There are four types
of states:

● Informational states used to communicate progress between parties, but triggers no change
in rights/obligations but records a desire to know or share the information,

● Milestone states are special contractual states that represent settlement finality points,
where one or more rights have ceased or obligations have been discharged,

● Initiation states are states that cause a right and obligation to come into existence, and
● Exception states that place the transaction into an exception condition

State changes are triggered by events that cause a state transition to a new state. One of the most
valuable opportunities when moving to computable contracts is the ability to formally define “fail
paths”. A fail-path is a state transition which handles a failure event by handling or raising an
exception.

Exception states

In contracts today fail-paths most commonly trigger exception states. In most contracts an exception
state is a dispute resolution process defined in the contract, but in practice this rarely occurs. The
reason the contract rarely defines something that is actually done is that the legal dispute resolution
process requires a lawsuit or arbitration. Lawsuits, arbitrations and mediations are high risk, costly
and time consuming events which turn resolution over to relatively disinterested parties who have
unaligned incentives. These incentives mainly have nothing to do with a fair resolution needed to
maintain a good working relationship. Bad relationships are generally bad for business so neither
party is quick to trigger the contracted dispute resolution process.

Therefore, most exception states are ignored or are handled in some informal negotiation between
the parties. How these ignored exceptions are handled varies by culture, and even the same
process may look different from one culture to another. The most common actual exception process
is some form of the “since you did this, you owe me that” pattern of resolution. In this pattern,
exception states are ignored by both parties for a while, then at some point one of the parties will
trigger a tallying and valuing that will be done in some manner. This can occur at the end of a
project, in a quarterly business review, ad hoc, or when one party needs a favor from another.

There is then a formal or informal process between the parties and in some cases this will involve
another party to horse trade based on each party's list of the other parties' exceptions. These
exceptions are always valued in some way and the parties reconcile or agree on a method of
compensation.

In some cultures, such as Japan, this process is typically initiated by the party that owes the most as
a way of saving face. In other cultures, such as the Middle East, this is a process that is typically
initiated by the party that owes the other party the least when a favor is needed.

Regardless, the designing of computable contracts offers an opportunity to automate many of these
fail-paths to prevent exceptions. Common dispute resolution processes like the “since you did this,

42

you owe me that” pattern can be automated so that the tallying is automated and the negotiation
process is prescribed to occur on a periodic basis.

This enables the informal process to be turned into a formal one that matches the culture and actual
process used today. By doing this we can turn a hidden unquantifiable relationship asset or liability
into a measured relationship asset or liability. This asset does not have to be valued until the
dispute resolution process is completed, but for the computational contract to work it must be
handled. Otherwise, some level of the relationship dynamic is not controlled by the contract
workflow and the actual rights and obligations are not known.

Acceleration clauses
Acceleration clauses are the ultimate fail path in many contracts and should be avoided wherever
possible in computable contracts. The reason for this is that they make an obligation, such as debt,
due immediately if a party defaults on other contractual obligations, such as payment obligations.
These clauses are frequently used today in debt financing contracts to force a party into a
negotiation or legal default on the contract. This means they always require human dispute
resolution and so they cause an exit from the computable processes.

Therefore, these should be used carefully as they can create a systemic failure across multiple
obligations. In master services agreements and Sweetbridge architected agreements these are
typically avoided and more graduated failure paths that can be automated are recommended.

Default clauses
Default clauses are subcomponents or state components. These clauses typically define the state
and events that trigger the ultimate fail-path within a workflow. They are used for breach of contract.
They may also provide a sub workflow for remedies or defined rights of the non-defaulting party.

Events
Event components trigger state transitions and can be anything from one of several automatic
events, like a date, to a business process event requiring rich data. Automatic events are things
such as calendar events, timer events, or period based events – e.g. A payment being due 15 days
from receipt of goods. Each business process event definition produces an APIs that can be called
by an external process to trigger the event – e.g. provision of a weight certificate, laboratory grading
and receiver per bale of seed cotton on an order.

Data provided on events may require data validation or may have data type restrictions. Missing,
incomplete and invalid data being provided to events is quite common. Event component data
validation and exception handling is one of the most important aspects to enabling computable
contracts to function properly. Decades of experience has demonstrated that the best designs for
event data error handling are to create state transitions and processes to deal with the most likely
cases of data error on events.

The platform comes with several default transitions that are automatically added to every state that
takes a business process event. The most important of these is a default exception process that
always exists. This exception process allows the event to be called without raising a system
exception that would stop execution. Instead data errors are returned in a data error structure as the
return result of each call to an Event component API. This design prevents a malicious actor from
passing data errors as a way of crashing a transaction workflow.

43

When an Event component data error is not handled by a state transition the platform provides a
default state transition. This transition handles the exception by queuing the exception for human
review and notifying interested parties. All data exceptions are logged and categorized by state,
source, Event component, reason, and valuation rule.

Logging of Event component data errors enables analysis for recurring patterns in data errors to
facilitate self healing exception handling and new state transitions based on error history. These
enable the ability of the component developer to create data quality clauses that use data error
statistics to drive economic incentives. These economic incentives can be used to incent high
quality timely information and penalize undesirable data behaviors.

These error statistics also enable contracts that automatically police data quality for informational
states that don’t drive contract rights but do have economic effects on the parties. This can be a
very powerful way of gradually improving data quality and timeliness. The reason this works is that
the data provider has an ability to cost-justify improvements that result in higher quality and more
timely information. It is also a great way to find the point of diminishing return on investments in data
quality across providers.

Since computable contracts are dependent on Event components to change state and no event will
have perfect information all of the time, the platform enables any Event component to be triggered
manually. A website interface and personal device App are automatically configured when a new
event is defined. These are automatically added to the contract interface for all computable
contracts.

Every Event component API requires the caller to use an authenticated identity token. This token
provides the identity of the individual, device or system calling the API. This means only an
individual, device or system can trigger an event that changes state in a contract. Event
components can also require n parties to verify the same event before the event will be triggered.

Multiple approval or a maker–checker model can be easily added to any event without the
component developer doing anything. This is possible because all events support a “propose then
approve” pattern. This pattern is controlled via each party's contract configuration and may be
defined or changed at any time in the contract life. For example, an event for receiving goods could
be triggered by a receiver in one instance of the contract while in another instance of the same
contract a barcode scanner, a receiver and a warehouse supervisor must all approve the event
before the event would be triggered.

Calendar events and deadlines

Calendar events are special platform level events that are used for things like deadline clauses.
These events trigger deadlines or other special calendar clauses in contracts..

Timers and time clauses

Timer components use one or more events to set a relative point in time to trigger another event,
such as payment. These are used to set out the time for production/supply of goods, discharge of
obligations under the contract etc.

44

Time is of the essence clauses

These types of events set out deadlines and stipulations as to either calendar dates or timers and
generate time is of the essence clauses.

Rights | Obligations
Contractually rights always create obligations for a counterparty. Rights come into existence at a
specific state of a workflow, and are terminated at another state in the same workflow. Obligations
are created for one or more counter parties, at the same time, by the same state as the right.
Obligations continue to exist until they are discharged at the same time as the counterparty right is
terminated.

Rights and obligations can either be transferable or non-transferable. All transferable rights and
obligations have a registry that tracks the current owner of the right and the current owner of the
obligation. These are tokenized and can be represented on a blockchain or DLT ledger if desirable.

Since the rights and obligations are in a register, this means other rights or obligations can be
created off of these rights and obligations. Therefore, rights to be subdivided into other rights or new
rights can be created on top of existing rights. The same can be done with obligations. This is one of
the most important abilities of computable contracts and the Sweetbridge platform, because it allows
the creation of derivative like instruments on assets, goods, and services.

This can unlock enormous hidden value that sits latent in these assets, goods and services today.
The size of this partial value is potentially greater than the derivatives market today. The reason this
is true is that there are more asset classes today that don’t have derivatives than those that do, yet
the total value of the derivatives market is enormous. This would provide the same abilities to
companies as banks currently have to hedge risk and issue options.

For example, let’s say Louis Vuitton wanted to create more revenue. It could sell a right to receive
the first handbag produced from each new Louis Vuitton bag line for the next 5 years. This right
would be very valuable, and would cost little to create but it would be most valuable if the right was
tradable. Louis Vuitton could sell the right to get the first bag and make it transferable in a
computable contract but they could not make the obligation transferable because only Louis Vuitton
could fulfill the obligation - a Louis Vuitton bag.

States that terminate a right and discharge obligations are milestones. Milestones that provide
settlement finality are more valuable than those that don’t. This is because settlement finality
eliminates the risk that the milestone can be undone.

Being able to know what rights and obligations exist on a transaction at any point in time provides
one of the greatest benefits of computable contracting. The reason for this is that the risks of the
obligation being fulfilled can be defined in near real-time.

Lien clauses

Lien clauses are a sub-component to a right component. Liens allow for, or exclude a right to retain
possession of goods, as security or an interest in a good or asset, such as a lien on a property from
a mortgage or a mechanics lien. These always work with a rights registry/ledger within the platform
and are tokenized and transferable by default.

45

Retention of title clauses
These clauses allow a party (usually the seller) to retain its title (ownership) in goods which are
being sold, i.e. the seller of goods protects itself against non-payment by the buyer by way of
retaining ownership of the goods until payment is received from the buyer. These are used instead
of workflow and rights components when no automated process is possible. These clauses are
always a sub-component to a Rights component.

Waiver clauses

Waiver clauses are a sub-component of a right component that enables a voluntary and intentional
surrendering of a right, benefit or privilege within a contract.

Risks
All rights carry risk, the counterparty risk that the counterparty won’t fulfill their obligations at the
very least. Today, risks are rarely defined in contracts. However, to access many of the benefits of
computable contracts, risks must be identified explicitly. This is not a requirement but real time risk
management is only possible when it is done.

There are many reasons to do real-time risk management:

1. To automate company risk analysis for accounting, risk management, business disruption
and audit.

2. To enable lower cost insurance which uses real-time risk assessment to determine premium
cost based on continuously assessed risk instead of periodic risk assessment.

3. To provide real-time assessment needed for counter parties such as financing entities,
auditors, insurance companies, and supply chain partners.

Many risks are common across industries within standard business processes, commercial activity
and for specific types of assets. The risk of theft for goods or fire for a building are examples. Each
risk needs one or more methods of risk assessment.

Risk assessments
Each risk may have one or more risk assessment methods. These methods break down into three
areas of risk assessment, Risk Level, Risk Window, and Risk Magnitude.

Risk level

A risk assessment consists of a means to estimate the level of risk. The Sweetbridge platform
converts all risk levels into a rating between 0 to 5. No matter how risk assessment is done the risk
must be reduced to a value between 0 and 5. Zero means there is no risk and 5 means the highest
possible level of risk exists.

The practice of reducing risk into a single value between 0 and 5 is common in the insurance
industry. Each type of risk needs at least one means for estimating the risk level. In property for
example, this is commonly done via a risk survey. The risk survey may be done by satellite and or a
building inspection by a risk surveyor.

46

Regardless of the method, a set of facts about the geographical location, a building's environs and
the building itself are used by all insurance organizations to develop a property risk score. The facts
used by each insurance company or risk auditor may vary and the score each underwriter would
assign will also vary. The Sweetbridge platform stores all of these facts for each risk assessment so
that different scoring methods can be supported off the same data.

Risk levels are separated into open data structures that can be used to support different risk level
assessment processes. Different auditors or insurance companies can then create their own risk
scoring processes that can be added to standardized risk components. This allows for both
standardized and use-case specific risk levels to be supported by the platform.

Each risk assessment method’s data requirements produces an automatically generated API and
user interface to collect or view the risk facts.

Risk window

Each risk assessment has a risk window which is the timeframe for the risk frequency and value
settings. The size of the window should be limited to the time between possible max value events.
For example, if a building fire destroyed a building and it would take a year to rebuild then the Risk
window for the building fire risk should be one year.

Risk magnitude

Risk magnitude is the amount of risk within a risk window represented as a magnitude and standard
deviation for the risk within the window in value terms. To calculate the standard deviation of risk
each risk assessment component must have one or more ways to determine the value of a likely
risk event. These are stored as three values, frequency, average value and max loss. These are
used to develop a standard deviation for the risk. The “frequency” defines on average how many
loss events occur within the risk window.

The “average” defines the value of the average loss per risk event expressed in a decimal value
plus a currency qualifier. The “max loss” defines the highest possible loss for a single risk event and
is defined as a decimal value and a qualifier.

Risk mitigation
Risk mitigations can be added only to risks. Each risk can have one or more required or optional risk
mitigation methods. The reason for defining the risk mitigation within a contract is to express
acceptable ways for mitigation of risk between parties. There are four methods for dealing with risk:

● Avoidance – Contract clauses that specify or require means of avoiding risks for both
financial loss and damage,

● Acceptance – With some risks, the expenses involved in mitigating the risk is more than the
cost of tolerating the risk. Parties in this situation can use clauses to disclose risk that
another party acknowledges accepting or defines a method of monitoring,

● Transference – Contract clauses that define how risk is shared or transferred such as the
use of insurance, hedging or other pooling techniques, and

● Limitation – Contract clauses that require a party to take some type of action to address a
risk and regulate exposure. Risk limitation usually uses some risk acceptance and some risk
avoidance clauses as well.

47

By defining risk mitigation in computable contracts the risk mitigation method can be monitored to
determine if it is occurring. Alternatively, the risk mitigation method can be automatically performed.
For example, insurance can be paid for by the computable contract out of payment processes so
that it is always known to be in force.

Computable contracts that manage settlement with integrated accounting within the Sweetbridge
platform can also provide new ways to manage many counterparty risks. A simple example of this
would be party A owes party B and party B owes party C. Computable contracts tied to settlement
through payment can use risk mitigation clauses that would settle party B’s commitment to party C
with party A’s payment to B if party B does not pay their commitment to C.

The above example is a very simplistic but easy to understand example of what can be done. In a
complex value chain within an ecosystem these could be extended to include thousands of parties
and by linking ecosystems to ecosystems this could be extended even further. Though further study
using economic models of this is needed several value chain segments studied in several industries
show a significant reduction of counterparty risk in settlement.

This methodology can be further used for counterparty risk in obligations as well. By using
computable contracts on real world assets, goods and services we can enable businesses to create
derivatives. By trading them between partes in ecosystems, like financial institutions trade them
today, we can hedge many counterparty risks using the same methods as banks.

Risk provision

Risk provision clauses are sub-components of risk mitigation components. They are used to
regulate the transfer of risk between the contracting parties, or to or from a third party. Risk
provisions may also include any related duties such as the requirement to insure goods. Risk
provision clauses are a type of risk transference.

Indemnity clauses
Indemnity clauses are sub-components of risk mitigation components. They are used for clauses
that set out agreement particulars for compensation or reimbursement by one party for the loss or
liability suffered by another party. Indemnity clauses are a type of risk transference.

Conditions
Conditions can be added to all components except contracts, including other conditions. Conditions
use logic on parameters to determine if a condition is true. Conditions can be used to determine if
other components apply. A condition on an SOW for example can be used to determine if the SOW
applies to a specific transaction.

A special type of condition can also be used inside of Clause Components to make the clause
language sensitive to other clauses and configuration information in the contract hierarchy. This
allows the legal language used in a clause to change when specific configuration values are set or
other clauses are present in the contract. For example, if a Jurisdiction indicates the governing legal
jurisdiction is in “England and Wales”, in the UK the language can be expressed one way, but if it is
the state of “New York” in the US it’s language can be expressed entirely differently.

48

Contract configuration
The contract configuration component is a standardized component that is common to all platform
components. Therefore, it is not a component someone creates as there is one and only one
configuration component.

Contracts that are created from a contract template use contract configuration components to store
the configuration parameters within the contract. This configuration is structured similarly to the
settings App in a smart device. Each component can read other components configuration and can
store its own configuration. The Sweetbridge platform is designed to store these values in an
immutable form.

A standard application for reading, defining and updating component configuration when creating
contracts is designed into the platform. Creators of components can build additional component or
contract specific configuration tools but they must all store their configuration in the standard
contract configuration component.

Each component that requires configuration must publish or use a defined configuration interface.

Configuration interfaces

The platform is designed to support standardized configuration interfaces that can be defined in a
similar way to abstract classes in object oriented programming. These standardized interfaces
operate at either a platform level or an ecosystem level to standardize the configuration of clauses.
This enables clause writers to use standardized configuration information but specific clause
language.

Dependency tree

Each component that takes configuration must publish a configuration definition and its component
dependency tree. A component dependency graph works similar to dependency references in
programming languages. It allows the author of one component to require inclusion of other
components in any contract that uses the component.

This can be defined either as a specific component or a clause component of a specific
classification that supports a specific interface. The reason this is a tree is that order of precedence
is implied in hierarchy. Therefore, not only is a specific clause required but it must be enforced at a
specific level of the component hierarchy.

Interface enumerations and lists

Many times configuration information is multiple choice or controlled by a list provided by some
outside system. The configuration template supports both of these. An enumeration is simply a list
of possible valid values. There are two types of enumerations, simple and contextual.

Simple enumerations are nothing more than a list of values and a description of what the value
means. Contextual enumerations that are based on another value. For example, if the country is the
“US” then the state/province list might be the list of states in the US. However, if the country is the
UK the state/province list might be the list of nation’s that are part of the UK, such as England or
Scotland.

49

Lists come from external API calls that follow a standard platform interface where the list must be
provided by an external system. This is useful for lists that deal with products or services which are
company specific. It also allows values to be verified by external systems such as addresses or
company registration numbers in some countries. This could be dynamic or static with a periodic
re-evaluation. Dynamic exhibits are common in contracting today which refer to documents that are
not part of the contract itself.

Value formats and validations

Configuration information may have value formats or validation requirements to prevent errors in
contracting. The valid format of an address, date, phone number or employment identification
number are examples. For computable contracts to function, values in variables must be valid. This
requires a level of rigger around variables that print-contracts never have.

For example, on a property insurance contract the address of the property must be the address of
the insured location not the address of the owner of the property. Yet, a surprising number of these
contracts are not filled out correctly. For computable contracts to automatically assess risk for
example, the address must be correct. A user interface that forces the identification of the property
to be insured via satellite image for example would go a long way to preventing this type of error.

Contract templates

Contract templates are similar to contract forms. In computable contracts these templates can be
much more flexible than in a printed form. Templates define all of the components needed with their
corresponding configuration requirements.

A computable contract can be generated from a template by configuring the template’s configuration
using the configuration application and publishing a contract. Additionally. templates can be used to
create other templates with some configuration provided, but other configuration left to be defined.

Therefore, a template that takes one hundred configuration parameters could be used to create a
new template that only requires four, the names and notice addresses of two parties.

Template wizards
Contract templates can be designed for use by individuals and businesses instead of lawyers.
These less sophisticated users may need help in understanding the choices of parameters that
templates offer such as various optional clauses. Therefore the platform is designed to support
customized wizards that can be published with templates.

Pricing
Pricing components price or value the assets, goods, or services in transactions controlled by a
computable contract. Pricing for goods or services on a contract can range from a single number, to
a complex series of tables and algorithms, to a price quote via an external system.

Pricing components are built to handle specific forms of pricing or asset valuation.

Discounts
Discount components are a subset of pricing components that calculate discounts after pricing or
within the pricing of items in a transaction.

50

Invoicing
The automation of invoicing in a computable contract enables the contract itself to sign the invoice.
In a properly designed contract, this is valuable because it turns the invoice from a questionable
quality asset, known as a receivable, into commercial paper.

This is known in banking as a verified invoice, a signed invoice or something similar depending on
the country. A verified invoice means that the buyer has no disputes and will pay the invoice on
around the date it is due. The credit risk on financing this type of invoice is the lower of the credit
risk of the buyer or seller. This means the interest on this financing or factoring this type of invoice
may be much lower for smaller enterprises.

This type of invoice is also used in many supply chain financing programs which allow less
creditworthy trading partners to benefit from the financial strength of their counterparty. Supply chain
financing and non-recourse receivables financing are typically only possible with some form of
verified invoice process.

Cost allocation and account coding
There are three reasons a company may not pay an invoice on time that have nothing to do with a
dispute:

1. They don’t want to pay because of balance sheet working capital considerations,
2. They can’t pay because they don’t have the funds to use on working capital, or
3. They can’t pay because they can’t book the invoice in the ERP system.

A study covering hundreds of millions of invoices from a wide variety of industries and countries
conducted by Trax Technologies, Inc. found a surprising fact. The most common reason for a late
payment by a major corporation is its inability to cost-allocate the invoice in the ERP system. You
literally can’t enter an invoice in a modern ERP system without valid GL and cost coding being
entered. If you don’t know what these are, you can’t enter the invoice, if you can’t enter the invoice
you can’t make the payment.

Therefore, the platform is designed to support cost allocation components for invoicing. These
range from simple fixed information to complex algorithms based on product lines, transaction
specific information, business units or department structures.

Settlement
Settlement components enable computable contracts to use the platform to conduct payment and
asset transfer settlement and reconciliation. When combined with invoices created by the
computable contract significant value can be unlocked. The combination of invoicing digitally signed
by the contract that governs the transactions allows both parties to know that the transaction is valid
and will be paid on time.

When combined with ecosystem provided settlement finality, it is possible to create very low risk
working capital solutions at an ecosystem level. Just as Ali Pay can use payment history on
suppliers and place itself into a position to ensure payment because it handles all settlement,
ecosystems can do the same thing. This can reduce working capital cost for the seller while allowing

51

the buyer longer payment terms, enabling working capital in receivables and inventory to become
more balanced with working capital provided by payables.

Incentives
Computable contracts provide highly measured commerce activity. This is a side effect of their use.
This enables ability to design fine grained incentive systems into contracts to provide economic
incentives instead of simply legal incentives. Rewards and penalties can be designed to create a
ROI that causes the counterparty to invest in process improvements. These process improvements
lead to better and better performance until a diminishing return on investment is reached. This is
very different from using legal penalties, or a breach of contract clauses, which have no upside
economically and therefore actually motivate a behavior of doing as little as possible.

Incentive components can be used for everything from powerful loyalty systems that create shared
economic value to incentives and penalties for performance. Economic incentives have historically
proven significantly superior to contractual obligations. The ability to engineer economics into
contracts that adaptively create win / win incentives may be the most valuable, and at the same time
most undervalued, ability of computable contracts.

Take a reward system of something like an airline for example. Most major airlines create more
enterprise value from their rewards systems than their operations. However, these systems are so
poorly designed that they create major liabilities on the balance sheet even though they are worth
more than the airline in many cases.

Using computable contracts, Sweetbridge won an award from SAP and Lufthansa by showing how 7

the airlines’ point systems could be redesigned to convert a €1.8bn liability into a €1.5bn asset using
computable contract royalty shares with zero change in cash flow or P&L. That is a €3.3bn increase
in enterprise value.

To showcase this and drive investment in the platform, components and ecosystem creation, the
platform has a powerful reward component for ecosystem master services contracts. This
component uses the ability of computable contracts combined with settlement, identity and
accounting to turn discounts, rebates, cashback and rewards into royalty shares. These royalty
shares are tokenized, this provides liquidity in ecosystems that provide their own market making
function to create this liquidity by buying back these royalty shares for cash.

These royalty share tokens are automatically given to parties as a reward for helping to grow
ecosystems. Both buyers and sellers receive these incentives. Each of these is engineered to
create more and more cashback to the owner as the ecosystem grows. This is accomplished by
keeping the growth rate of new royalty shares below the growth rate of cash back from discounts,
rebates, cashback and rewards.

This cashback comes in the form of restricted cash that can only be spent in the ecosystem. It is
real cash, but can only be spent with a member of the ecosystem. This creates a powerful incentive
to buy again from within the ecosystem but does not create a liability because it is fully funded from
the discounts, rebates, cashback or other incentives already being provided by participants.

7
https://newsroom.lufthansagroup.com/english/newsroom/lufthansa-and-sap-announce-winners-of--aviation-bl
ockchain-challenge-/s/d0e6491f-d942-4cab-a3f4-3463b9a11719

52

By default, the value of these incentives is set at four times the annual cashback they provide, and
liquidity is provided to buy these back from anyone by using some of the cashback to redeem the
incentive. Sweetbridge is already doing this in the construction industry. Based on economic models
we have projected that a single ecosystem member with $250m per year in revenue will create
more than $100m in additional balance sheet value over a 5 year period.

Rebates
Rebate components monitor the economic use of a contract and provide rebates based on the level
of economic activity, reaching specific thresholds within a period of time. For example, if the
transaction value under contract is between $1M and $2M per quarter, a rebate of 5% on the
quarter’s activity will occur. However, if the economic activity is more than $2M per quarter the
rebate will be 7.5%.

Rebate components can be a simple table of thresholds, as with the above example, or they can be
complex based on a combination of activity by product lines, SKUs or services.

Data requirements
Data frequently needs to be passed between parties as part of events, or as a party of the
transaction workflow. Data requirement components allow the parties to define what data needs to
be provided, when it needs to be provided, the format of the data, and the acceptable transmission
methods.

Data required
Data required components define the documents, data files, locations and other information
requirements, including things such as data rooms or shared folders.

Data structure
Data structure components define the data structure's syntax and semantics for events, transaction
APIs and transaction files. These components define the data structures and attributes that are
mandatory, options or conditions.

Data structure components provide contract schedules that define file formats and data structures.
These include data structures such as EDI, XML and CSV file structures that are to be used by the
parties to exchange information on transactions governed by the contract.

In most cases these components should be designed to validate the data structure, syntax and
attribute requirements of transactions as the data is received. This enables dispute resolution
processes and incentive systems based on the data, and allows both parties to validate data before
and after transmission.

Data transmission
Data transmission components define the data and file transmission requirements, processes
including encryption, and transmission methods such as email attachments, HTTPS, FTP, etc.

53

Product, project and service requirements
These components define requirements between the parties. When certifications are required these
components define what kind and who the valid entities are for the certification process. In some
cases these processes may have their own SOWs or Workflows. These components enable parties
to sign off on requirements as part of a contract workflow’s events.

The most simplistic of these is nothing more than a shared set of document files that are
dynamically attached to the contract as they are generated and approved by the parties. These may
be in machine readable and/or human readable formats as needed.

Product requirements
Product requirement components define product specifications including testing or certification
requirements.

Project requirements
Project requirement components contain project documentation and specification information.
These may be in machine readable or human readable formats depending on the need.

Service requirements
Service requirement components contain service requirements documentation and specification
information.

Testimonium and signature blocks
Testimonium and signature block components are used to add electronic signatures to other
components, contracts and contract templates. These can use Sweetbridge identity systems using
personal smart devices, PDF signatures or paper signatures depending on the need.

Attestation provisions

Testimonium clauses and signature blocks that must be countersigned, witnessed or signed by a
notary can also be supported. These create attestation provisions within a contract but can also be
used in transactions to sign or confirm an event or document.

54

Component ownership
The intellectual property (IP) ownership of components is controlled by a licensing agreement which
itself is a computable contract. This licensing agreement protects the IP of the authors of the
component. New components and contract templates can be created from most existing
components or templates.

However, when creating components or dependencies on other components the IP ownership of the
individual component creators is maintained. Therefore a template created from an existing
template has no IP because it only adds configuration values. Some things are not allowed to be
owned on the platform because they do not represent creation of intellectual property that must be
rewarded and maintained.

Configuration values, component interfaces, and templates derived from other templates aren’t
considered IP.

Component use business model
The platform is designed to reward component creators who build and maintain components by
allowing them to charge a royalty for their component’s use. These royalties are based on a point
system that adds up to a total on a contract. Component authors participate in a fee all contracts
charge on the transaction value they enable. This is possible because the Sweetbridge platform not
only deals with the legal contract, but also the accounting and settlement of all transactions using
these contracts.

Royalties are collected for 7 years from the publish date of any component version. This is done for
two reasons, one to encourage constant maintenance of components and the second to limit value
extraction from components that don’t continue to have investment or are static. After the 7 year
period components become open source.

Component writers can choose to mark their components as open sourced. Open sourced
components do not share in royalties. As a result as more components are made open source the
value that accrues to non-open sourced components increases. As this value increases, the
benefits to the ecosystem from an alternative open-sourced component increases. The reason for
this design is to focus new for profit IP creation on areas that have not been built versus areas that
are well represented with lots of components.

Royalty calculations 8

The royalties for a contract or template can be set by any combination of the ecosystem, component
domain or author. The royalty can be changed at any time. However, increases will not affect any
contract components that are already in use, only new contracts. Decreases will go into effect on
existing contracts for new transactions.

Royalties are broken into two categories, author and points. Half the royalties are distributed
pro-rata by component authors and the other half are distributed pro-rata by component points.
Component points are meant to represent the level of the investment in the development of the
component.

8 This area of the platform needs further evaluation by behavioral economics and complex system theorists.

55

Component authors

All of the authors contributing components to a contract or contract template are counted. 50% of
the contract royalties’ shares are awarded pro-rata based on author. This is calculated by counting
all of the components in a contract or template from each author and dividing that number by the
total number of components. Therefore, if one author created 10 components and the contract was
made up of 100 components they would get 10% of the author royalty shares or 5% of the total
royalty shares for the contract.

The authors’ shares are calculated when the template or contract is created not when transactions
are executed. Therefore, when a component is added to a contract the component author gets
credit even if that component is never used by a transaction covered by the contract.

Open sourced components do not receive royalty shares nor do they count in the component total.
This creates an incentive for creators to contribute simple components to the open source base. By
contributing to the open source base they increase the amount of royalty they receive from
non-open sourced components that require significant investment. Over time this should result in a
rich set of simple open source components.

The royalty agreement is a computable contract template itself that can always be overridden in a
specific use case, like any other computable contract template. This allows the components to be
shared with a predetermined way to use other parties IP without needing to negotiate or even
contact the other party. This allows IP to be freely distributed and commercialized via a market
place built into the platform much like smart device app stores.

Component points

Component points allow the creators of a component to indicate the investment required to create
the component. Component points are integers in a range of -1 to 100,000. -1 indicates the
component is open sourced, Zero indicates no royalty points but the IP is protected. Components
with a value of zero are still counted in the calculation of author shares. Contracts and templates
have no max points but all other components have a max points of 100,000. The value of a point is
notionally equal to $1 of investment in the development of the component.

The investment in the development of the component is self reported and not audited. Therefore,
some authors will overstate the value of their investment while others will undervalue it. However,
because the value is published, a higher value will reduce others’ interest in using an over valued
component within their components or templates. Conversely a value that is too low may cause
others to question its ability to be maintained over time, reducing their desire to use the component.

Since an open marketplace exists for components on the platform, multiple authors of similar
components can exist. This should result in many overpriced or undervalued components
self-correcting over time.

Compound components are built from other components and have their own point value. The sum
of all sub components in a compound component can be more than 100,000. When this occurs
there is a property on each component except a template or contract that allows one of three
options:

1. Prorate – Component creators can indicate they will take a prorated value for use of their
component without negotiations. The compound component value is set at 100,000 and all

56

sub components and the authors own points are added and prorated based on the total of
100,000. Therefore, if the sum of sub components was 100,000 and the author of the
compound component set their points at 100,000, the total would be 200,000. This means
that each point in the component would be set at 100,000/200,000 or ½ its value.

2. Negotiate – The component creator can indicate that they will negotiate point values. To
negotiate, the authors publish an email address and phone number to contact for
negotiation. Component creators can then sign a lower point value waiver which itself is a
computable contract to set the new agreed points.

3. Exclude – This indicates that the creators are unwilling to let their component be used in a
way that would reduce the prorated value of their points being reduced.

Contract royalties
Contract royalties are set by the contract creator, the ecosystem or domain governance process.
These are limited by the platform to either a max amount, which can be any amount, a basis point
value between 1-100 or the lower of both a fixed amount and a basis point value.

Therefore, the creators of a component might have their component used in contracts that would
produce sufficient funds to provide their desired return on investment, or to cover their ability to
maintain the component in the future. As a result, the platform is designed to allow component
creators to set a minimum aggregate amount on an annual basis from any use. When this is not
reached the contract creator can negotiate a custom royalty agreement with the component creator
to continue to utilize the authors component.

Right to withhold
All component creators can choose to withhold their components from use by specific domains or
ecosystems. This can be done either explicitly or reactively. Because the royalty amount is set on
the contract or template by the author when published in domain or ecosystem, the component
author has no way to force a specific royalty amount. To create an economic incentive for pricing to
be set at a reasonable level, creators can withhold their components from a contract's use with 90
days of notice.

This is designed to create a tension between those that set the pricing and the authors of
components that forces a win / win solution. To further incentivise ecosystems to properly price fees
on contracts, components can't collect any funds at a transaction level that are not controlled by the
transaction contract.

This allows the platform to publish the ecosystem fees and contract fees to all component authors.
Since the authors know the amount the ecosystem is making off of the use of its contracts they can
choose to withhold the right of use. Conversely to prevent authors from holding ecosystems
hostage, contract or template creators can choose to change components to one from another
author at any time.

This allows market discovery and value information to be symmetric. It means that pricing has to
stay within market bounds or the party out of market will lose. Since there is no supply constraint on
software it allows the creation of supply constraints to make a component scarce if pricing drops too
low.

57

Tokenized
All royalty shares from contracts and components are tokenized so they can be transferred to new
owners. This sets the model for tokenization of all assets, rights and obligations within the platform.

Component domains
Components can be published into domains or ecosystems. Domains allow a grouping method for
components that are designed for specific use cases, industries, geographies, or as a means of
organization. Domains can be uncontrolled or controlled.

Uncontrolled domains don’t have any validation process. Controlled domains have a formal review
process that a component must pass to be rated and go into production. Controlled domains allow a
review process to be established under some governance body to manage a minimum level of
verification or peer review before publication. These bodies can also set the royalty amount for the
contract.

Ecosystem production domains would typically be controlled where test or development domains
would typically not be controlled. Any party can also set up their own domain for development.

Testing and modeling
Computable contracts and components are software and software needs testing. The platform is
designed to enable both testing and modeling of scenarios.

Testing
Before components can be published in a production domain they must include test scripts that can
be used to verify all paths of code execution and all exceptions. These test scripts are used by
validation processes to make sure that components are properly verified.

Modeling
This means that scripts can be created to model what happens under a contract based on specific
events or conditions. This is a very useful feature of computable contracts and components because
what-if scenarios can clearly show parties what would happen if x or y occurred.

Component certification
Today, contacts are reviewed by multiple lawyers whenever parties create a contract and have
independent legal representation. Computable contract components must build on this practice and
potentially include other disciplines such as technical reviews, accounting, ethics, etc.

Therefore, domains and ecosystems can require production components and contract templates to
be certified. This can be done however the domain or ecosystem governance body desires. These
certification processes can then be used to set a rating on components or templates that pass
minimum requirements. This body would also police components to make sure that authors were
not simply plagiarizing components that are created by another author.

For example, an ecosystem might require that accounting components be audited by a financial
audit firm to make sure accounting treatments were valid.

58

Component rating
Component rating can be user feedback based, formal rating by the governance body, or both
depending on the governance body or domain decision. Ratings allow peer review processes to
provide star ratings based on 5 stars. Formal ratings can use certification icons to represent passing
of the component by one or more certification processes.

Information ratings also support reviews with free form text comments. All ratings require a platform
identity and identity of the party providing the rating to prevent scam and fake ratings.

Clauses
Clauses add the specific legal language for a wide range of legal requirements. Clauses are
organized into classifications that relate to the purpose and semantic of the clause. Clauses are
classified as extensible lists of:

● Categories – see Clauses section below for the major categories,

● Types,

● Groups, and

● Sets.

Clauses support translation of the primary language into multiple translations to support
internationalization.

Enforceability clauses
Clauses that are specific to a legal jurisdiction which control the type of law and legal jurisdictions
for dispute within a court. There are currently three types of enforcement clauses:

● Governing law,

● Jurisdiction, and

● Statute of limitations.

Dispute resolution clauses
The dispute resolution clauses define the type, method, and party to use for dispute resolution
between the parties that must be used before seeking the participation of a court. There are four
types of dispute resolution clauses:

● Mediation,

● Arbitration,

● Ecosystem Resolution, and

● Automatic.

Liability clauses
Liability clauses control how liability between the parties and on transactions is handled. Who is
responsible for what under what conditions. There are currently four types of liability clauses:

59

● Limited liability,

● Third party rights,

● Specific Liability (Product, etc.), and

● Joint and several liability (Clauses that define and provide for the total liability either
collectively or individually of the parties if damages or losses occur.).

Capacity
The party signing has the right and mental capacity to make the agreement. They may attest to the
fact that they are authorized to execute the agreement on behalf of a legal entity or another party.
There are currently nine types of capacity clauses:

● Power of Attorney,

● Trusts,

● Mental Capacity,

● Real Estate Trusts,

● Corporations,

● Consortiums,

● Charities,

● Government, and

● Ecosystem.

General clauses computable
Miscellaneous clauses which have computable functionality.

General clauses non-computable
Miscellaneous clauses which do not have computable functionality and are only textual.

Force majeure
Clauses that represent unforeseeable circumstances that prevent someone from fulfilling a contract
or clause. There are currently two types of force majeure clauses:

● Acts of God, and

● Specific definitions.

Data privacy clauses
Components for data privacy and non disclosure. There are currently three types of data privacy
clauses:

● Non-disclosure,

● Individual data privacy, and

● Organizational data privacy.

60

Data access clauses
Components that define data access and sharing rules. There are currently two types of data
access clauses:

● Data access policy, and

● Data sharing.

IP ownership clauses
Components that define intellectual property.

Severance clauses
If any of the clauses become illegal or unenforceable what actions should be taken such as that
clause is no longer in effect but the contract is still valid.

Setoff clauses
Clauses that govern rights of set off on claims or damages. There are currently five types of setoff
clauses:

● Rights to setoff,

● Contractual setoff,

● Legal setoff,

● Insolvency setoff (organization), and

● Bankruptcy setoff (individual).

Damages clauses
This is a very large area of contracting with hundreds of specific types of damages. There are
however six main types of damages:

● Compensatory damages,

● Exemplary/Punitive damages,

● Nominal damages,

● Incidental damages,

● Consequential damages, and

● Liquidated damages.

Authentic version clauses
These clauses detail the language to be used in the event of a conflict/dispute.

Entire agreement clauses
Clauses used to state that the given contract contains the entire agreement between the parties and
that there are no additional or supplementary agreements, warranties or representations. This does

61

not mean that the contract can not be adaptive or modified, only that it must be approved by both
parties when changed. When changes are executed a new agreement can become the entire new
agreement and depending on design, may or may not constrain any prior agreements.

Exemption clauses
Exemption clauses used to set out any exclusions, or limitations of any duty or liability. Exemption
clauses are also part of condition components to express condition logic in written form. Exemption
clauses can be used without conditions when they need to rely on human versus computable logic.

Retention of title clauses
These clauses allow a party (usually the seller) to retain its title (ownership) in goods which are
being sold, i.e. the seller of goods protects itself against non-payment by the buyer by way of
retaining ownership of the goods until payment is received from the buyer. These are used instead
of workflow and rights components when no automated process is possible. When a computable
solution is possible Rights components should be used with states instead.

Best endeavours clauses

Best endeavors provisions for a party stating it does not warranty a particular matter but undertakes
to attempt to achieve such a result that is defined and agreed in an agreement.

Recitals provision

Clauses that provide statements of agreed or understood facts material to the contract.

Reps and warranty clauses

These clauses provide a written undertaking as to the correctness of certain claimed facts material
to the contract.

Assignment of rights
The ability to assign rights and obligations is a property of the right or obligation at a specific state.
The general assignment language is defined at each right or obligation and can be turned off and on
at each state.

Insurance templates
Insurance templates are special contract templates for use in risk mitigation components that
transfer risk using insurance. These templates allow standardized ecosystem level insurance
coverage to be baked into contracts. This prevents each party from having to provide their own
insurance and enables the ecosystem to provide insurance at wholesale instead of retail cost.

62

Dynamic vs static contracts
Today all contracts are static, meaning once executed that contract does not evolve over time.
Computable contracts can actually be designed to adapt over time as laws change or as activity
between the parties evolves.

63

